10-3 Properties of Logarithms

Objective: Simplify and evaluate expressions using the properties of logarithms. Solve logarithmic equations using the properties of logs.
I. Properties

1. Product: $\log _{b} m n=\log _{b} m+\log _{b} n$
2. Quotient: $\log _{b}(m / n)=\log _{b} m-\log _{b} n$
3. Power: $\log _{b} m P=p \times \log _{b} m$

$$
\begin{aligned}
\log _{5}(200)=\log _{5}(2.125) & =\log _{5} 2+\log _{5} 125 \\
& =4307+\log _{5} 5^{3}=.4307+3=
\end{aligned}
$$

EX 2. Use $\log _{6} 8=1.106$ and $\log _{6} 32=1.9343$ to approximate the value of $\log _{6} 4$. $=3.4307$
$\begin{aligned} \log _{6} 6=x \quad \log _{6} 4=\log _{6} \frac{32}{8} & =\log _{9} 32-\log _{4} 8 \\ & =1.9343-1.106=\end{aligned}$

$$
=1.9343-1.106=.8283
$$

EX 3. Given $\left[\log _{5} 6=1.1133\right.$, approximate the value of $\log _{5} 216$.

$$
\begin{aligned}
\log _{5} 5^{x}=x \quad \log _{5} 216 & =\log _{5} 3^{3}= \\
& =3 \log _{5} 6 \\
& =3(1.1133)=3.3399
\end{aligned}
$$

$$
\begin{aligned}
& \text { II. Solve. } \\
& \text { Ext. } 6 \log _{2} x+\log _{8} 55=\log _{2} 2125 \\
& \log _{2} \frac{x^{2}-\log _{2}-\log _{2} 25}{}=\log _{2} 125 \\
& \begin{array}{c}
\log _{2} \frac{x^{4}}{5}=\log _{2} 125 \\
5 \cdot \frac{x^{4}}{5}=R 5.5
\end{array} \\
& \sqrt[4]{x^{4}}=\sqrt[2]{25} \\
& x= \pm 5 \quad x=5 \text { and } \\
& \text { nice you } \\
& \text { Cant take the } \\
& \log \text { of } a(-) \text { \#. } \\
& \text { EX 5. } \log _{8} x+\log _{8}(x-12)=2 \\
& \log _{8}(x(x-12))=2 \\
& \gamma^{2}=x(x-12) \\
& 64=x^{2}-12 x \\
& 0=x^{2}-12 x-64 \\
& \begin{array}{r}
0=(x-16)(x+4) \\
x=16 x-4)
\end{array}
\end{aligned}
$$

EX 6. $3 \log _{5} x-\log _{5} 4=\log _{5} 16$

$$
\begin{gathered}
\log _{5} x^{3}-\log _{5} 4=\log _{5} 16 \\
\log _{5} \frac{x^{3}}{4}=\log _{5} 16 \\
4 \cdot \frac{x^{3}}{4}=16 \cdot 4 \\
\sqrt[3]{x^{3} \sqrt[3]{64}} x=4
\end{gathered}
$$

EX 7. $\log _{4} x+\log _{4}(x-6)=2$

$$
\begin{aligned}
& \log _{4}(x \cdot(x-6))=2 \\
& 4^{2}=x(x-6) \\
& 16=x^{2}-6 x \\
& 0=x^{2}-6 x-16 \\
& 0=(x-8)(x+2) \\
& x=8)
\end{aligned}
$$

