10-4 Common Logarithms

Objective: Solve exponential equations and inequalities using common logs. Evaluate logarithmic expressions using the Change of Base Formula.
I. Use a calculator to evaluate each expression to four decimal places.

EX 1. $\log 5 \approx .69897=.6990$
$\mathrm{Ex} 2 . \operatorname{log72} \approx .85733=8573$
II. Solve.

$$
\begin{aligned}
& \stackrel{\operatorname{Ex} 5.27 x \times, 3 x+3}{\log 2^{2 x}>}>\log 3^{(x-3)} \\
& 7 \times \log 2>(5 x-3) \log 3 \\
& 7 \times \log 2>5 \times \log 3-3 \log 3 \\
& 7 \times \log 2-5 \times \log 3>-3 \log 3 \\
& \left.\frac{x(7 \log 2-5 \log 3)}{7 \log 2.57 \log 3}\right) \left.>\frac{(-3 \log (3))}{(7 \log (3)-5 \log (3))} \quad x \right\rvert\, x>5.1415 \\
& \begin{array}{l}
\text { Ex6. } \boldsymbol{y}^{5 y>}<88^{3 y-1} \\
\log 5^{y y}<\log 8^{y-1}
\end{array} \\
& 3 y \log 5<(y-1) \log 8 \\
& 3 y \log 5<y \log 8-\log 8 \\
& \text { 3y } \log 5-y \log 8<-\log 8 \\
& \frac{y(3 \log 5-\log 8)}{3 \log 5-\log 8}<\frac{(-\log (8))}{(3 \log (5)-\log (8))} \\
& y \mid y<-.7565
\end{aligned}
$$

III. Change of Base Formula (to base 10).

$$
\log _{a} n=\frac{\log n}{\log a}
$$

Ex 7. $\log _{512}=\frac{\log 12}{\log 5}=1.5440$
Ex 8. $\log _{4} 25=\frac{\log 25}{\log 4}=2.3219$

