10-5 Base e and Natural Logarithms
Objective: Evaluate expressions involving the natural base and natural logs. Solve exponential equations and inequalities using natural logs.
I. Intro- P. 554 What is e?

If $y=\ln x$, then $e^{y}=x$.
II. Evaluate- 4 decimal places.

Ex 1. $e^{.5} \approx 1.6487$

$$
\begin{gathered}
E \times 2 . e^{-8} \\
3.3546 E^{-4}
\end{gathered} .0003
$$

EX 3. $\ln 3 \approx 1.0986$
$E \times 4 . \ln (1 / 4) \approx-1.3863$
III. Write equivalent expressions.

EX 5. $e^{x}=23 \quad \ln 23=x$
Ex 6. $\ln x=1.2528 e^{1.2528}=$
IV. Inverse Property of Base e and natural logs.

$$
\begin{aligned}
& e^{\ln x}=x \text { and } \ln e^{x}=x \\
& \text { EX 7. } e^{\ln 21}=21 \\
& \text { Ex 8. } \ln e^{x^{2}-1}=x^{2}-1
\end{aligned}
$$

V. Solve (all prop. of logs apply to natural logs as well).

$$
\begin{aligned}
& \text { EX 9. } 3 e^{-2 x}+4=10 \\
& \left.\begin{array}{r}
3 e^{-2 x}+4=10 \\
\frac{3 e^{-2 x}-4}{3}=\frac{6}{3} \\
-2 x
\end{array} \right\rvert\, \begin{array}{l}
\ln 2=-2 x \\
\frac{-2}{-2} \\
y=\ln (2)
\end{array} \\
& \begin{array}{l|l}
e^{-2 x}=2^{3} & x=\frac{\ln (2)}{-2} \\
\ln 2^{2}=-2 x & x=-.346
\end{array} \\
& \text { EX 10. } \ln 3 x=.5 \\
& \text { (.5) } \\
& =\frac{3}{3} x \\
& .5496=x \\
& \text { Review } \\
& \begin{array}{l}
\log _{b}(x y)=\log _{b} x+\log _{b} y \\
\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y
\end{array} \\
& \left\{\log _{b} x^{n}=n \cdot \log _{b} x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { EX 11. } \ln (2 x-3)<2.52 .5
\end{aligned}
$$

$$
\begin{aligned}
& \text { } 3 x<e^{2.5}+3 \\
& x<\frac{\left(e^{(2.5)}+3\right)}{2} \\
& x>\frac{3}{2} \\
& * \text { Need } \frac{2}{2} 1.5<x<7.5912 \\
& \text { Recall } \\
& \log _{2} x<\frac{5}{5} \\
& x<2^{5} \\
& 0<x<32
\end{aligned}
$$

EX 12. $\$ 700$ is deposited into an account paying 6% annual interest compounded continuously.
*
$A=$ amount after + years, $P=$ principal. principle $r=$ rate, $t=y e a r s$.
\qquad
A. What's the balance after 8 years?

$$
\begin{aligned}
& A=p e^{r t}(.06 * 8) \\
& A=700 e^{(1131.25}
\end{aligned}
$$

B. How long will it take to grow to a least $\$ 2000$?

$$
\begin{aligned}
\frac{F}{F} & =p e^{r t} \\
\frac{2000}{7 \delta} & =\frac{700}{700} e^{(.06 \cdot t)} \\
\frac{20}{7} & =e^{(.06 t)} \\
\frac{\ln \left(\frac{20}{7}\right)}{.06} & =\frac{.06 t}{.06} \\
17.5 & =t
\end{aligned}
$$

