11-2 Arithmetic Series "Sum"
Objective: Find sums of arithmetic series. Use sigma notation.

Series: An indicated sum f f the terms of a sequence. $d=4$
18, 22, 26, 30-Arithmetic sequence.
$18+22+26+30$-arithmetc series.

$$
\begin{aligned}
& *)_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& n=\text { how } \\
& \text { termsadding } \\
& \begin{array}{l}
1^{s t} \\
\text { tum } \\
\hline
\end{array} \\
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]
\end{aligned}
$$

EX 1. Find the sum of the first 20 even numbers, beginning with 2.

$$
\begin{array}{rlr}
2,4,6,8 \ldots 40 & n=20 & S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1} & =2 \\
a_{20}=40 & S_{20}=\frac{20}{2}(2+4(
\end{array}
$$

$$
\begin{aligned}
& 1+2+3+4 \ldots+100 \\
& n=100 \\
& a_{1}=1 \\
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{100}=100 \\
& S_{100}=\frac{100}{2}(1+100) \\
& =50(101)=5050
\end{aligned}
$$

$31 d a y s$
EX 3. A radio station considered giving away $\$ 40 \rho 0$ everyday in August, which would equal $\$ 124,000$. But they decided to increase the amount given everyday, but give the same total. They want to increase $\$ 100$ a day, so how much should they give away the first day? We need a_{1}.

$$
\begin{aligned}
& \text { first day: We need } a_{1} \quad n=31 \\
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-0)\right] \\
& 124,000=\frac{31}{2}\left[2 a_{1}+(31-1) 100\right] \\
& \frac{124,000}{15.5}=\frac{15 / 5}{5.5}\left[2 a_{1}+3000\right]
\end{aligned}
$$

$$
S_{31}=124,000, d=100
$$

$$
8000=2 a_{1}+3000
$$

$$
5000=2 a_{1}
$$

$$
a_{1}=2,500 \text { ond by } 1
$$

EX 4. Find the first 4 terms of the arithmetic sequence in which $a_{1}=14, a_{n}=29, S_{n}=129$.

$$
14,17,20,23
$$

$73 \times 3+3$
Step 2

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& 29=14+(b-1) d \\
& 15=5 d \\
& 3=d
\end{aligned}
$$

We need "d".
Step

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
129 & =\frac{n}{2}(14+29) \\
\frac{129}{43} & =\frac{n}{2} \cdot \frac{43}{43} \\
3 & =\frac{n}{2} \\
6 & =n
\end{aligned}
$$

Sigma Notation-shortens writing out series.
Summation Notation
Ex 5. $3+6+9+12+\ldots+30$.
$\sum_{1}^{10} 3 n$
Need formula

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=3+(n-1) 3=3+3 n-3
\end{aligned}
$$

$=3 n-$ formula
EX 6. Evaluate

$$
\begin{aligned}
\sum_{k=3}^{10}(2 k+1) & =(2 \cdot 3+1)+(2 \cdot 4+1)+(2 \cdot 5+1)+(2 \cdot 6+1) \\
& +(2 \cdot 7+1)+(2 \cdot 8+1)+(2 \cdot 9+1)+(2 \cdot 10+1) \\
& =7+9+11+13+15+17+19+21 \\
& =112
\end{aligned}
$$

EX 7. 8

$$
\begin{aligned}
& \sum_{j=5}(3 j-4) \\
& 3 \cdot 5-4=11=a_{1} \\
& 3 \cdot 8-4=20=a_{4} \\
& \text { Ex 8. } 6+13+20+27+\ldots+97 \\
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{14}=\frac{14}{2}(6+97)=
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
S_{4} & =\frac{4}{2}(11+20) \\
& =2(31)=62
\end{aligned}
$$

we need " n "

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& 97=6+(n-1) 7 \\
& 97=6+7 n-7 \\
& 97=7 n-1 \\
& 98=7 n \\
& 14=n
\end{aligned}
$$

