11-5 Infinite Geometric Series

Objective: Find the sum of an infinite geometric series. Write repeating decimals as fractions.
I. Read P. 599 and go over **

Infinite geometric series: goes on forever.
Partial Sum: S_{n} is called a partial sum for this series.
Convergent series: An infinite series that has a sum.
II. Sum of an infinite geometric series.
$S=\frac{a_{1}}{1-r}$ $\begin{aligned} & -1<r<1 \\ & S=s u m\end{aligned} \begin{aligned} & \text { Terms at the end of a sequence approach } 0 \text {, so } \\ & \text { there will be a sum if }-1<r<1 .\end{aligned}$
EX 1. $(1 / 2)+(3 / 8)+(9 / 32)+\ldots$ Find the sum, if it exists. Check "r": $r=\frac{\frac{3}{8}}{\frac{1}{2}}=\frac{3}{8} \cdot \frac{x}{1}=\frac{3}{4}$ $-1<\frac{3}{4}<1$ yes!

EX 2. 3-(3/2)+(3/)-(3/8)+...
Check "r"

$$
\begin{aligned}
& r=\frac{-\frac{3}{2}}{\frac{3}{1}}=\frac{-y}{3} \cdot \frac{1}{8}=\frac{-1}{2} \\
& S=\frac{a_{1}}{1-r}=\frac{3}{1-\frac{1}{2}}=\frac{3}{1.5}=2
\end{aligned}
$$

EX 3. $(-4 / 3)+4-12+36-108+\ldots$

EX 5. ∞

$$
r=\frac{1}{2} \quad S=\frac{a_{1}}{1-r}=\frac{5}{1-\frac{1}{2}}=\frac{5}{\sum_{n=1}^{2}}=10
$$

IV. Write a repeating decimal as a fraction.

EX 6. .3939...

$$
\begin{aligned}
& \text { } \begin{aligned}
& r=\frac{.39+.0039+.000039+\ldots}{.39} \quad \frac{a_{1}}{1-r}=\frac{.39}{1-.01}=\frac{.39^{\times 100}}{.99 \times 100}=\frac{39}{99} \\
&=.01 \\
& \text { Ex 7. } 2525 \ldots \ldots \\
&=.524524 \frac{13}{33} \\
& r=\frac{.000524}{.524}+\frac{a_{1}}{1-r}=\frac{.524}{1-.001}=\frac{.524}{.999}=\frac{524}{999}
\end{aligned} \\
& r=.001
\end{aligned}
$$

