12-2 Permutations and Combinations
Permutations: When a group of objects are in a certain order and order DOES matter. (telephone numbers)

$$
{ }_{n} P_{r}=P(n, r)=\frac{n!}{(n-r)!} \quad \begin{aligned}
& n=\text { total } \\
& r=\# \text { you are picking }
\end{aligned}
$$

Example 1: Eight people entered a pie contest. How many ways can blue, red, and white be awarded?

Example 2: There are 10 finalists in a skating competition. How many ways can gold, silver, and bronze be awarded?

$$
\begin{aligned}
& \begin{array}{c}
\text { Order } \\
\text { maters }
\end{array} \left\lvert\, P(10,3)=\frac{10!}{\substack{(10-3)!\\
7!}}=\frac{10 \cdot 9 \cdot 8 \pi!}{7!}=720\right. \\
& \text { OR } \\
& \overline{10} \cdot \overline{9} \cdot \overline{8}=720
\end{aligned}
$$

$\frac{n!}{p!q!\cdots}$ total \#ofletters
Example 3: How many different (distinguishable) ways to arrange letters of Mississippi?

Combinations: Order is NOT important. (committee members)

$$
\overbrace{\text { total }}^{\text {ch n }, r)}=\frac{n!}{(n-r)!r!}
$$

Example 4: Twenty people are at a birthday party. Three people need to pick up the pizza. How many ways to choose the people? Order does not matter (3)

$$
\begin{aligned}
& C(20,3)=\frac{20!}{17!3!}=\frac{20 \cdot 19 \cdot 1 \cdot 17!}{17!3 \cdot 2 \cdot 1}=20 \cdot 19 \cdot 3=\begin{array}{l}
1140 \\
1 \text { Ways }
\end{array} \\
& \hline \text { Order does not matter? }
\end{aligned}
$$

Example 5: Six cards are drawn from a deck of cards. How many hands consist of two hearts and four spades?
order does not matter

$$
\text { hearts } \cdot \text { Spades }=C(13,2) \cdot C(1,4)=55,770 \text { ways }
$$

Example 6: Seven students in a group and 2 students need to present their project. How many ways can the students

$$
\begin{aligned}
& \left.c(7,2)=\frac{7!+1}{5!2!}=\frac{08 \cdot 8!}{8!2!1}=7 \cdot 3=21\right) \\
& c
\end{aligned}
$$

Example 7: Five cards are drawn from a deck of cards. How many hands consist of 3 clubs and 2 diamonds?
order does not matter

$$
\begin{aligned}
= & \text { Clubs } \cdot \text { diamonds } \\
= & C(13,3) \cdot C(13,2) \\
& 286 \cdot 78 \\
& 22,308 \text { Ways }
\end{aligned}
$$

$$
\begin{aligned}
& -{ }^{-H} \mathrm{H}_{n} \mathrm{Cr}_{r}
\end{aligned}
$$

