## 12-5 Adding Probabilities

Simple event: An event that consists of only one event. Compound event: An event that consists of two or more simple events.
 Mutually exclusive events: Two events cannot occur at the same time.

## Probability of Mutually Exclusive Events

If two events, $A$ and $B$, are mutually exclusive, then the probability that $A$ and $B$ occurs is the sum of their probabilities. $P(A$ or $B)=P(A)+P(B)$

Ex1. Keisha has a stack of 8 baseball cards, 5 basketball cards, and 6 soccer cards. If she selects a card at random from the stack, what is the probability that it is a baseball or a soccer card?


Ex2. There are 7 girls and 6 boys on the junior class homecoming committee. A subcommittee of 4 people is being chosen at random to decide the theme for the class float. What is the probability that the subcommittee will have at least 2 girls? Order does

$$
\begin{aligned}
& =\text { P(atleasta Girls) } \\
& P(2 G 2 B \text { or } 3 G 1 B \text { or } 4 G)=\frac{C(1,2) \cdot C(6,2)}{C(13,4)}+\frac{C(1,3) \cdot C(6,1)}{C(13,4)}+\frac{C(7,1)}{C(13,4)}=, .78
\end{aligned}
$$

Ex. Sylvia has a stack of playing cards consisting of 10 hearts, 8 spades, and 7 clubs. If she selects a card at random from this stack, what is the probability that it is a heart or a club?

$$
P\left(\text { hector club) }=\frac{10}{25}+\frac{7}{25}=\frac{17}{25} \approx=(18)\right.
$$

Ex4. The Film Club makes a list of 9 comedies and 5 adventure movies they want to see. They plan to select 4 titles at random to show this semester. What is the probability that at least two of the films they select are comedies?
$P($ at least 2 comedies)

$$
\begin{aligned}
& P(2 C 2 A, 3 C 1 A, 0 r 4 C) \\
& \frac{C(9,2) \cdot C(5,2)}{C(14,4)}+\frac{C(9,3) C(5,1)}{C(14,4)}+\frac{C(9,4)}{C(14,4)} \\
& =\frac{906}{1001} \approx .91
\end{aligned}
$$

Inclusive events: Two events whose outcomes may be the same.
Probability of Inclusive Events
If two events, $A$ and $B$, are inclusive, then the probability that $A$ or $B$ occurs is the sum of their probabilities decreased by the probability of both occurring.

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Ex. The enrollment at Southburg High School is 1400. Suppose 550 students take French, 700 take algebra, and 400 take both French and algebra. What is the probability that a student selected at random takes French of algebra?

$$
\begin{aligned}
P \text { frerechor Algebra) } & =\frac{5550}{400}+\frac{700}{1400}-\frac{400}{1400} \\
& =\frac{850}{1400} \approx 661
\end{aligned}
$$

Ex6. There are 2400 subscribers to an Internet service provider. Of these, 1200 own Brand A computers, 500 own Brand $B$, and 100 own both $A$ and $B$. what is the probability that $a$ subscriber selected at random owns either Brand $A$ or Brand $B$ ?

$$
\begin{aligned}
& P(\text { Brand A or Brand })=\frac{1200}{2440}+\frac{500}{2400}-\frac{100}{2400} \\
& \\
& \text { rings } \rightarrow 4 \text { silver }=\frac{1600}{2400}=0
\end{aligned}
$$

(14) $P$ (allgold or all silver) $=P$ (GGG or $S S S$ )

$$
\frac{c(5,3)}{c(9,3)}+\frac{c(4,3)}{c(9,3)}=\frac{1}{6}=.16
$$

(16) PlAt Last I Silver)
$=P(1225$ or $2 s 1 G$ or $3 s)$

