4-7 Identity and Inverse Matrices
Objective: Determine whether 2 matrices are inverses.
Find the inverse of a 2×2. Identity Matr ix

$$
\text { Read page 195... } A \cdot A^{-1}=A^{-1} \cdot A=I \quad I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Determine whether each pair of matrices are inverses.

$$
\begin{aligned}
& \text { Ex 1) } x=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] \text { and } y=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] \quad \text { X } y=y X=I_{2} \\
& x y=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]=\left[\frac{3+-2}{\frac{1+1}{-1}} \frac{6+-6}{-2+3}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { since } x y=y x=T_{2} \\
& y x=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
\frac{3+-2}{3+-3}-\frac{-2+2}{-2+3} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { are inverses } \\
& \text { Ex 2) } P=\left[\begin{array}{ll}
3 & -1 \\
4 & -2
\end{array}\right] \text { and } Q=\left[\begin{array}{cc}
1 & -3 \\
2 & 4
\end{array}\right] \text { ofelach other. } \\
& \begin{array}{r}
P Q=\left[\begin{array}{ll}
3 & -1 \\
4 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & -3 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
\frac{3+-2}{-9+-4} \\
- & -13 \\
1
\end{array}\right] \\
\text { Since }-13 \neq 0
\end{array} \\
& \text { These twomatrics } \\
& \text { are inverses } \\
& \text { ofeach other. }
\end{aligned}
$$

Some matrices do not have an inverse. You can determine whether it does or does not by using the determinant...
$a d-b c=\operatorname{det} A$ (determinant of A)...If the determinant of A is 0 , then the matrix does not have an inverse.

How to find an Inverse of a 2×2.

$$
A=\left[\begin{array}{ll}
3 & -1 \\
4 & -2
\end{array}\right] \text { then } A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

kmorize $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Ex) $R=\left[{ }^{-4} \mathrm{X}_{6}^{-3}\right]$
$\operatorname{det} R=-24-24=-24+24=0$ Inverse does not
Ex 4) $P=\left[\begin{array}{ll}3 & X_{1}^{1} \\ 5 & 2\end{array}\right]$
$\operatorname{det}=6-5=1)$

Ex 5) $S=\left[\begin{array}{cc}-1 & \boldsymbol{X}^{0} \\ 8 & -2\end{array}\right]$
$\operatorname{det} S=2-0=2$

$$
\begin{aligned}
& \frac{1}{1}\left[\begin{array}{cc}
2 & -1 \\
5 & 3
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right]=p^{-1} \\
& \frac{1}{2}\left[\begin{array}{cc}
-2 & 0 \\
-8 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
-4 & -\frac{1}{2}
\end{array}\right]=S^{-1}
\end{aligned}
$$

