5-1 Monomials

Objective: Multiply and Divide Monomials Use expressions written in scientific form.

Monomials:
$5 b,-w, 23, x^{2}, 1 / 3 x^{3} y^{3}$
$5 x^{2} y^{4}$
comment 5
Degree(sum of exp. variables): um of exp. variables):

Rules

1. Negative Exponents
$a^{-n=1 / a^{n}} \quad 1 / a^{-n=} a^{n}$

$a m / a n=a m-n$
$76 / 7^{2}=74$

2. Properties of Powers

Power of a power: $\left(a^{m}\right)^{n}=a^{m n}$

$$
\left(7^{2}\right)^{5}=7_{10}
$$

Power of a product: $(a b)^{n}=a^{n} b^{n}$

$$
(5 a)^{2}=25 a^{2}
$$

Power of a quotient: $(a / b)^{n}=a^{n} / b^{n}$

Scientific Notation: used to express very large or very small numbers

```
ax10n where 1\leqa< 10, n--any integer
```

Ex 8: Express in Scientific Notation.
A) 4560000
B) 000092
4.5×10^{6}
9.2×10^{-5}

Ex 9: Evaluate. Express each in Scientific Notation.
$\begin{aligned} & \text { A) }(5 \times \underbrace{35}+0^{103})\left(7 \times 10^{8}\right) \\ & \text { B) }\left(1.8 \times 3 \times 10^{10-4}\right)\left(4 \times 10^{10}\right)\end{aligned}=7.2 \times 10^{-3}=3 \times 10^{12}$
Ex 10: There are about 5×10^{6} red blood cells in one ml of blood. A certain blood sample contains 8.32×10^{6} red blood cells. About how many ml of blood are in the sample?

$$
\frac{8.32 \times 10^{6}}{5 \times 10^{6}}=\frac{8.32}{5}=.664 \mathrm{ml}
$$

