6-1 Graphing Quadratic Functions

Objective: Graph quadratic functions.
Find and interpret the maximum and minimum values of quadratic functions.
** Use Graphing Calculator**
$f(x)=a x^{2}+b x+c$, where $a \neq 0$

Quadratic Linear
Term Term
Constant
Term

Y-intercept is when $x=0$, so $a(0)^{2}+b(0)+c$, is just c
(x, y)

Min: opensup and a is positive

> verteror min
vertex

Ex1) Graph $f(x)=x^{2}+8 x+9$ with a calculator and use formulas.
$\left\{\begin{array}{ccc}a=1, b=8, c=9 & x=\frac{-b}{2 a}=\frac{-8}{2 \cdot 1}=-4 & (-4)^{2}+8(-4)+9 \\ \vdots & \text { Vertex: } & =16-4,-7) \\ \vdots y \text {-int } & \text { Line if symmetry: } & =16-32+9 \\ & & =-7\end{array}\right.$

Min Max: $(-4,-7)$

$$
\left(-y_{i} 7\right) \text { lurex }^{1}
$$

Table of values:	x	y
	-4	-7
y	0	9
	-4	9

Ex2) Graph $f(x)=x^{2}+3 x-1$ with a calculator and use formulas.
$\begin{aligned} a=1, b=3, c=-1 \quad x & =-\frac{-1}{2 a}=\frac{-3}{2} \text { vertex: }(-1.5-3.25)\end{aligned}$

$$
=(-1.5)^{2}+3(-1.5)-1
$$

vertex: $(-1.5-3.25)=-3.25$
Line if symmetry:

$$
C=-\mid \text { Y-intercept: }(0,-1)^{x}
$$

$$
x=\frac{-b}{2 a} x=-1.5
$$

(Miii) Max: $(-1,5,-3.25)$

Table of values:

$$
\begin{aligned}
& \begin{array}{l}
\text { Line if symmetry: } X=\frac{-b}{3^{2}}=-4 \\
X=-4
\end{array}
\end{aligned}
$$

$$
\begin{array}{cl}
\text { DDo \#11 firom the Homenowor } & a=2 \\
\text { 14. } y=2 x^{2} & b=0 \\
& c=0
\end{array}
$$

Cineof

$$
\text { vertex: }(0,0) x=\frac{-b}{2 a}=\frac{-0}{2.2}=0
$$

$c=0$ yint: $(0,0)$
min/max: $\min (0,0)$
Table:

$$
\frac{\frac{\frac{x / y}{00}}{112}}{-1 / 2} 2(1)^{2}=2
$$

