6.5 The Quadratic Formula \& The Discriminant

Objective: Solve quadratic equations by using the quadratic formula.
Use the discriminant to determine the number and type of solutions.

Quadratic Formula: If $\mathrm{ax}^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$
I. Solve using the Quadratic Formula

$$
\begin{aligned}
& \text { EX 2. } x^{2}-34 x+289=0 \quad \begin{array}{l}
a=1 \\
b=34 \\
c=289
\end{array} \\
& x=\frac{34 \pm \sqrt{1156-4 \cdot 1 \cdot 289}}{2(1)} \\
& x=\frac{34 \pm \sqrt{0}}{2} \\
& x=\frac{34 \pm 0}{2}=\frac{34}{2}=17
\end{aligned}
$$

Onesisution

$$
\begin{aligned}
& \text { EX 1. } x^{2}-8 x=33 \\
& x^{2}-8 x-33=0 \\
& \begin{array}{l}
a=1 \\
b=-8 \quad x=\frac{8 \pm \sqrt{64-4 \cdot 1: 33}}{2(1)} \\
c=-33
\end{array} \\
& x=\frac{8 \pm \sqrt{196}}{2}=\frac{8 \pm 14}{2} \\
& \begin{array}{l}
x=\frac{8+14}{2}=\frac{22}{2}=11 \\
x=8-14
\end{array} \\
& x=\frac{8-14}{2}=\frac{-6}{2}=-3
\end{aligned}
$$

$$
\begin{gathered}
a=2 \\
b=4 \\
c=-5 \\
\text { EX3. } 2 x^{2}+4 x-5=0 \\
x=\frac{-4 \pm \sqrt{16-4 \cdot 2 \cdot(-5)}}{2(2)} \\
x=\frac{-4 \pm \sqrt{56}}{4} \\
x=\frac{-4 \pm \sqrt{4 \sqrt{14}}}{4} \\
x=\frac{-4) \pm(2) \sqrt{14}}{4} \\
x=\frac{-2 \pm \sqrt{14}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& a=1 \\
& b=-4 \\
& c=13
\end{aligned}
$$

EX 4. $x^{2}-4 x=-13$

$$
x^{2}-4 x+13=0
$$

$$
x=\frac{4 \pm \sqrt{16-4 \cdot 1 \cdot 13}}{2(1)}
$$

$$
x=\frac{4 \pm \sqrt{36}}{2}=\frac{\left(\frac{2)}{2}+6 i\right.}{2}
$$

$$
x=2 \pm 3 i
$$

Discriminant-Tells how many and what kind of solutions.
$\mathrm{b}^{2}-4 \mathrm{ac}>0 \quad 2$ real roots (rational/irrational)
$b^{2}-4 a c=0 \quad 1$ real root
$b^{2}-4 a c<0 \quad$ No real roots, 2 complex (imaginary).

NOTE: if $\mathrm{b}^{2}-4 \mathrm{ac}>0$ and it is a perfect square: rational Xintercepts/Solutions and it is not a perfect square: irrational
II. How many roots and what type?
$a=1 \quad b=6 c=9$
EX 5. $x^{2}+6 x+9=0$ real sol.
$b^{2}-4 a c=36-4(1)(9)$

$$
=36-360(0)
$$

EX 6. $x^{2}+3 x+5=0$

$a=1 \quad b=8 c=4$
EXT. $\mathrm{x}^{2}+8 \mathrm{x}-4=0$

