6.6 Analyzing Graphs of Quadratic Functions

Objective: Analyze quadratic functions of the form

$$
y=a(x-h)^{2}+k \text { and write a quadratic in vertex form. }
$$

Explore: $y=x^{2}$ is called a parent function.
Graph and discuss:

1. $y=x^{2}+3$
2. $y=(x-2)^{2}$
3. $y=5(x-2)^{2}$
4. $y=x^{2}-6$
5. $y=(x+6)^{2}$
6. $y=-4(x+6)^{2}$
7. $y=(1 / 3)(x+3)^{2}$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{c}
\text { Horizontal } \\
\text { translation }
\end{array} \\
\text { Vertex Form: } \\
y=a(x-h)^{2}+k \longleftarrow \\
\begin{array}{l}
\text { a }>0 \text {, opens up } \\
\mathrm{a}<0 \text {, opens down } \\
|a|>1, \text { narrower graph of } y=x^{2} \\
|a|<1, \text { wider graph } y=x^{2}
\end{array} \\
\begin{array}{l}
\text { Translation }
\end{array} \\
(h, k)=\text { vertex }
\end{array} \\
& x=h \text { Line of symmetry }
\end{aligned}
$$

I. Write in vertex form, then ID vertex, axis of symmetry, and direction of opening.

$$
\begin{aligned}
& y=\left(x^{2}+8 x+16\right)-5-16 \\
& y=\left(x^{2}+2 x+1\right)+4-1 \\
& \begin{array}{l}
y=1(x+4)^{2}+21 \quad \text { vertexform } \\
y=a(x-h)^{2}+k
\end{array} \\
& \begin{array}{l}
y=(x+1)^{2}+3 \\
y=a(x-h)^{2}+k
\end{array} \text { vertex form } \\
& y=a(x-h)^{2}+k \\
& \text { Vertex: }(h, k)=(-4,-21) \\
& \text { Axis: } x=h, x=-4 \\
& \begin{array}{l}
\text { Vefex: }(h, k)=(-1,3) \\
\text { Axis: } y=h)
\end{array} \\
& \text { Axis: } x=h, x=-1 \\
& \text { Direction: } a>0 \rightarrow \cup p \text { Direction: } a>0, \text { up } \\
& \text { EX 3. } y=-3 x^{2}+6 x-1 \quad \text { EX } 4 . y=-2 x^{2}-4 x+2 \\
& \begin{array}{l}
y=-3\left(x^{2}-2 x+1\right)-1+3 \\
y=-3(x-1)^{2}+2
\end{array} \begin{array}{l}
y=-2\left(x^{2}+2 x+1\right)+2+2 \\
y=-2(x+1)^{2}+4
\end{array} \\
& \begin{array}{l}
y=-3(x-1)^{2}+2 \\
y=a(x-h)^{2}+k
\end{array} \text { vertextoven } \\
& \text { Vertex: }(h, k)=(1,2) \\
& \text { Axis: } x=h, x=1 \\
& \text { vertex: }(h, k)=(-1,4) \\
& \text { Axis: } x=-1 \\
& \text { direction: down }
\end{aligned}
$$

