6.7 Graphing \& Solving Quadratic Inequalities

Objective: Graph quadratic inequalities in 2 variables.
Solve quadratic inequalities in 1 variable.

See page 329
Step one: Graph the related quadratic equation, $\mathrm{y}=\mathrm{ax} \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$. Decide if the parabola should be solid or dashed.

Step two: Test a point (x, y) inside the parabola. Check to see if this point is a solution of the inequality.

Step three: If (x, y) is a solution, shade the region inside the parabola. If (x, y) is not a solution, shade the region outside the parabola.

More All Reals \& No Solutions

$0 \geq x^{2}+1$
No solution
I. Graph a quadratic inequality.

$$
\begin{aligned}
& \text { down } \\
& \text { Ext) } y>-6 x^{2}-6 x-7 \\
& x=-\frac{b}{2 a}=\frac{6}{2(1)}=-3 \\
& -(-3)^{2}-6(-3)-7 \\
& -9+18-7=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { vertex } \\
& (-3,2)
\end{aligned}
$$

Shading (0,0) Test

Ex) $y>1 x^{p}-3 x+2$ 0>-7 -Grue

$$
\begin{aligned}
& \text { Vertex: } x=\frac{-b}{2 a}=\frac{3}{2 \cdot 1}=\frac{3}{2} \quad\left(\frac{3}{2} \cdot-\frac{1}{4}\right) \\
& \left(\frac{3}{2}\right)^{2}-3 \cdot \frac{3}{2}+2 \\
& \frac{9}{4}-\frac{9 \cdot 2}{2 \cdot 2}+2:-\frac{9}{4}+\frac{2 \cdot 4}{1 \cdot 4}=-\frac{1}{4}
\end{aligned}
$$

yin $(0,2)$
$\frac{\text { Shading }(0,0) \text { Test }}{0>02-3(0)+2}$
$0>2$ False
II. Solve by Graphing

$$
\text { Ex) } x^{2}+2 x-3>0
$$

$(-1,-4)$
vertex: $x=\frac{-b}{\partial a}=\frac{-2}{\partial(1)}=-1$

$$
\begin{gathered}
(-1)^{2}+2(-1)-3=-4 \\
x^{2}+2 x-3=0 \\
(x+3)(x-1)=0 \\
x+3=0 \quad x-1=0 \\
x=-3 x
\end{gathered}
$$

Ext) $0>3 x^{2}-7 x-1$ Answer

$$
\begin{aligned}
& \text { Vertex } \\
& x=\frac{-b}{2 a}=\frac{7}{2(3)}=\frac{7}{6} \quad\left(\frac{7}{6},-5.083\right) \\
& 3(7 / 6)^{2}-7(7 / 6)-1=
\end{aligned}
$$

zeros

$$
3 x^{2}-7 x-1=()^{\text {does not factor }}
$$

$$
\frac{\mathrm{Tes}+(0,0)}{0^{2}+2(0)-3>0}
$$

$\frac{\text { zeros }}{3 x^{2}-7 x-1}=($ does not factor

from cold: $x=-135$
Test $(0,0)$

$$
x 22.468
$$

$$
\begin{aligned}
& 0>3(0)^{2}-x(0)-1 \\
& 0>-1 \text { yes }
\end{aligned}
$$

