7.4 The Remainder \& Factor Theorems

Objective: Evaluate functions using synthetic substitution
Determine whether a binomial is a factor of a polynomial by using synthetic substitution
$f(a)=4 a^{2}-3 a+6 \quad$ divide this by $(a-2)$
$4 a+5$
$a - 2 \longdiv { 4 a _ { 2 } ^ { 2 } - 3 a + 6 }$

$$
\begin{array}{r}
\frac{(-) 4 a^{2}-8 a}{0} \begin{array}{r}
5 a+6 \\
(-) 5 a-10 \\
+16
\end{array}
\end{array}
$$

$2)$	-3	6
	8	10
4	5	16

$$
f(2)=4(2)^{2}-3(2)+6=16-6+6=16
$$

** This Illustrates the Remainder Theorem:
If $f(x)$ is divided by $x-a$, then the remainder is the constant $f(a)$.
Dividend equals quotient times divisor plus remainder

$$
f(x)=q(x) \quad x \quad(x-a) \quad+f(a)
$$

