7.5 Roots and Zeros

Objective: Determine the \# and types of roots for a polynomial equation. Find the zeros of a polynomial function.

Fundamental Theorem of Algebra pg. 371

- Every polynomial equation of degree greater than zero has at least 1 root in the set of complex numbers.

I. Determine the \# and Type of Roots

$$
\begin{aligned}
& \text { Exp) } \begin{array}{l}
a-10=0 \\
\\
+10+10 \\
a=10 \\
\text { solution real }
\end{array} \text { solution, }
\end{aligned}
$$

Ex) $3 a^{3}+18 a=0$

$$
{ }_{\text {Ex 2 })} \begin{gathered}
x^{2}+2 x-48=0 \\
(x-6)(x+8)
\end{gathered}
$$

$$
\begin{array}{rl}
x-6=0 & x+8=0 \\
x=6
\end{array}
$$

$$
x=6 \quad x=-8
$$

$$
\begin{gathered}
3 a\left(a^{2}+6\right)=0 \quad 3 \text { solutions, } \\
3 a=0 \\
a=0) \quad a^{2}+6=0 \quad \text { real } \\
\sqrt{a^{2}=-\sqrt{6}} \text { 2imaginaly } \\
a= \pm i \sqrt{6}
\end{gathered}
$$

$$
\begin{gathered}
\text { Ext) y+16=0) 2 solutions, } \\
\left(y^{2}+4\right)\left(y^{2}-4\right)=0 \quad \text { real } \\
\left(y^{2}+4\right)(y-2)(y+2)=0 \\
y-2=0 \quad y+2=0 \\
\left.y^{2}=2\right)(y=-2
\end{gathered}
$$

So $p(x)$ of degree n will have n roots including the imaginary ones. $y+4=0,4$ solutions
II. Decartes Rule of Signs: finds \# of positive or negative zeros pg. 372

Ex5)

Positive: Use P(x)

4 sign changes(y's), so there are 4,2, or 0 posiive real zeros.
Negative: use P(-x)

One sign change(y), so there is 1 negative real zero

	Possible Combinations of Zeros		
Positive Real	Negative Real	Imaginary	Total
	1	0	5
2	1	2	5
0	1	4	5

III. Find all zeros of the polynomial (Hint: Use calc to find rational zeros first)
frombraph: $x=2$
EX 6. $f(x)=x^{3}-4 x^{2}+6 x-4$
EX 6. $f(x)-x^{3}-4 x+6 x-4 \quad \begin{aligned} & x=2 \\ & x=1 \pm i\end{aligned}$
from call: $x=-1$
$\begin{aligned} & \text { 2] } \begin{array}{rl}1-4 & -4 \\ 2-4 & -4 \\ 1-2 & 2\end{array} \quad 0 \\ & x^{2}-2 x+2\end{aligned}=0 \quad \begin{aligned} & x=\frac{2 \pm \sqrt{4-4 \cdot 1 \cdot 2}}{2 \cdot 1}=\frac{2 \pm \sqrt{-4}}{2} \\ &=\frac{2 \pm 2 i}{2}=1 \pm i \\ & \text { IV. Write a polynomial givenzeros }\end{aligned}$

$$
\begin{aligned}
& -11 \begin{array}{ccc}
1 & -1 & 2 \\
-1 & 2 & -4 \\
1-2 & 4 & 0 \\
x^{2}-2 x+4 & =0 \quad i \sqrt{4} \sqrt{3} \\
x=\frac{2 \pm \sqrt{4-4 \cdot 1 \cdot 4}}{2 \cdot 1}=\frac{2 \pm \sqrt{-12}}{2} \\
=\frac{2 \pm 2 i \sqrt{3}}{2}=1 \pm i \sqrt{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ext) } x=4,4-i, 4+i \\
& \text { Ext) } x=3,2-i \\
& p(x)=(x-4)(x-(4-i))(x-(4+i)) \\
& \begin{array}{l}
P(x)=(x-4)(x-4+i)(x-4-i) \\
P(x)=
\end{array} \\
& P(x)=(x-4)\left(x^{2}-8 x+17\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
p(x)=x^{3}-12 x^{2}+49 x-68 \\
26 \cdot x=4
\end{array} \times \frac{x^{2}-8 x+17}{\left|x^{3}\right|-8 x^{2} \mid 17 x}\left|-4 x^{2}+32 x\right| 68 \\
& \text { 2 8. } x=7 \\
& 30 \cdot x=.5 \\
& \text { 32. } x=4,-1
\end{aligned}
$$

