7.7 Operations with Functions Day 2
I. Simplifying Composition of Functions

Ex1) $f(x)=x+3 \quad g(x)=x^{2}+x-1$ Find $\left(f_{0} g\right) x$ and $(\underbrace{g} \circ f) x$.

$$
\begin{aligned}
f \circ g(x) & =f(g(x)) \\
& =f\left(x^{2}+x-1\right) \\
& =x^{2}+x-1+3 \\
f \circ g & =x^{2}+x+2
\end{aligned}
$$

Evaluate if $x=2 \cdot=f \circ g(2)$

$$
=2^{2}+2+2
$$

$$
=8
$$

$$
\begin{aligned}
g \circ f^{\prime}(x) & =g(f(x)) \\
& =g(x+3) \\
& =(x+3)^{2}+(x+3)-1 \\
& =x^{2}+6 x+9+x+3-1 \\
& =x^{2}+7 x+11
\end{aligned}
$$

$$
g_{0 f}(2)=2^{2}+7(2)+11
$$

$$
\begin{aligned}
& \text { Ex2) } f(x)=3 x^{2}-x+4 \quad g(x)=2 x-1 \quad h(x)=x^{2}-3 \\
& g \circ h(x)=g(h(x)) \quad h(g(x))= \\
& =g\left(x^{2}-3\right) \quad h(2 x-1)=(2 x-1)^{2}-3=4 x^{2}-4 x+1-3 \\
& =2\left(x^{2}-3\right)-1 \\
& =2 x^{2}-6-1 \\
& \left(g \text { du }()=2 x^{2}-7\right. \\
& \text { Evaluate } x=-22(4)-1=7 \\
& \left\{\begin{array}{l}
g(4)=2(-1)-1=-3
\end{array}\right. \\
& \text { A.) }(g(3-1))=f(-3)=3(-3)^{2}-(-3)+4=34 \\
& \text { B. hg(4) }=h(7)=7^{2}-3=(46 \text { OR } \\
& \begin{aligned}
\text { C. }(f .(h \circ g))(2)=f(h(g(2)) & =f(h(3))=f(6)=3(6)^{2}-6+4 \\
\downarrow & =106 \\
g(2) & =2 \cdot 2-1=3^{2}-3=6 \\
& =3
\end{aligned} \\
& \text { (\#30) } g(h(x))=g(-3 x+1)=-5(-3 x+1) \\
& \begin{array}{l}
g(x)=-5 x \quad h(g(x))=h(-5 x)=-3(-5 x)+1=15 x+1) \\
h(x)=-3 x+1
\end{array}
\end{aligned}
$$

Ex3) Tracy has $\$ 100$ deducted from every paycheck for retirement before taxes are applied, which reduces her taxable income. Her state income tax rate is 4%. If Tracy earns $\$ 1500$ every pay period, find the difference in her net income if she has the retirement deduction before or after state taxes.

