7.8 Inverse Functions \& Relations

Objective: Find the inverse of a function or relation
Determine whether 2 functions or relations are inverses
I. Relations - set of ordered pairs

Inverse Relation - set of ordered pairs obtained by reversing the coordinates of each original ordered pairs

Ex) Relation: $\mathrm{f}=\{(1,2),(3,4),(5,6)\}$

$$
\mathrm{f}_{-1}=\{(2,1),(4,3),(6,5)\}
$$

II. Finding Inverses

1) switch $x+y$
2) Solve for y

$$
\text { Exp) } f(x)=\frac{x+6}{2}
$$

$$
\begin{aligned}
& y \\
& E x 2) \\
& f(x)
\end{aligned}=\frac{-1}{2}(x)+1
$$

(1) $x=\frac{y+6}{2}$
(2) $2 x=y+6$

$$
\begin{aligned}
& 2 x-6=y \\
& f^{-1}(x)=2 x-6
\end{aligned}
$$

$$
\begin{aligned}
& (2)^{-2}(x-1)=-\frac{1}{2} \cdot y \cdot(-2) \\
& -2 x+2=y \\
& f^{-1}(x)=-2 x+2
\end{aligned}
$$

Ex2.5 $y=10$
Note: $f(x)+f^{-1}(x)$
are reflections are reflections
over the line $y=x$.
III. Inverse functions $-f(g(x))=x$ and $g(f(x))=x$ then the 2 functions are inverses

$$
\begin{aligned}
& \text { EX 3. } f(x)=5 x+10 \quad g(x)=(1 / 5) x-2 \\
& f(g(x))=f\left(\frac{1}{5} x-2\right)=5\left(\frac{1}{5} x-2\right)+10=x-10+10=X
\end{aligned}
$$

$$
\begin{aligned}
& \text { EX 4. } f(x)=6 x+2 \quad g(x)=x-(1 / 3) \\
& \text { inverses } \\
& \begin{aligned}
f(g(x))=f\left(x-\frac{1}{3}\right)=6\left(x-\frac{1}{3}\right)+2 & =6 x-2+2 \\
& =6 x \neq x
\end{aligned} \\
& \text { of each } \\
& g(f(x))= \\
& \text { so vern } \\
& \text { say that } \\
& f(x)+g(x) \\
& \text { are notinuerses } \\
& \text { ofeach other. }
\end{aligned}
$$

IV. One-to-One Test/Horizontal Line Test: If a function passes the horizontal line test then we say the function is one-to-one which means the function's inverse is a function.
vertical line Test*
horizontal line Test*

Function: yes, it passes vertical line
inverse function: Not a function, since it fails the horizontal linetest.

Function: Yes, it passes the vertical linetist. Inverse function: yes, the graph also passes the horizontal line test so its inverse is also a function.

* We then can also say the function is one-to-one!

