9-2 Adding and Subtracting Rational Expressions
Objective: Determine the LCM of Polynomials
Add and Subtract rational expressions
I. LCM--Least Common Multiple--use each factor the greatest number of times it appears as a factor and simplify.

$$
\begin{array}{ll}
\text { Ex 1) } 9,18,27,36,4554,63 & \text { Ex 2) } a^{2} b^{3}: \\
15,30,45, L C M=45 & a^{4} b:
\end{array}
$$

Ex 3) $18 r^{2} s^{5}-t^{0}$ ${ }_{24 r^{3} s t^{2}} L C M: 360 r^{3} A^{5} t^{2}$

15 sw $^{3 \mathrm{t}}$ 。
Ex 4) $p^{3}+5 p^{2}+6 p: p\left(p^{2}+5 p+6\right)$
$L(M: p(p+3)(p+3) p+2)$

$$
\begin{aligned}
& \text { 1. simplity } / a^{2 b}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{w+12-2 w-8}{4(w-4)}=\frac{-w^{2}}{4(w-4)}=-\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 x+20+(-3 x+15)}{6(x-5)}=\frac{-1 /+5}{6(x+5)}=\frac{-1}{6}
\end{aligned}
$$

(22) $\frac{6}{a b}+\frac{8 \cdot b}{a \cdot b}=\frac{6+8 b}{a b}$
(24) $\frac{5}{r}+\frac{7 \cdot r}{10 r}=\frac{5+7 r}{r}$
(26) $\frac{3 x^{3 x}}{3 x x^{3}}-\frac{y^{2 y^{2}}}{2 y^{2} 6 x}=\frac{9 x^{2}}{12 x y^{2}}-\frac{2 y^{3}}{12 x y^{2}}$
(28) $5^{5 \cdot 3} \cdot \frac{2.4}{5 q-4}-\frac{1.10}{2 q-10}=\frac{9 x^{2}-2 y^{3}}{12 x y^{2}}$
$=\frac{15}{20 q}-\frac{8}{20 q}-\frac{10}{20 q}$

$$
=\frac{-3}{20 q}
$$

