9-4 Direct, Joint, and Inverse Variation
Objective: Recognize and solve direct, joint, and inverse variation problems.
I. Direct: y varies directly as x if there is some nonzero k such that $\mathrm{y}=\mathrm{kz}$. (k is a constant)

Ex 1) If y varies directly as x_{j} and $y_{1}=-15$ when $x_{1}=5$. Find y_{2} when $x_{2}=3$.

II. Joint Variation: y varies jointly as x and z if there is some number k such that $y=k x z$ where k, x, and z cannot be zero.

$$
\frac{y_{1}}{x_{1} z_{1}}=\frac{y_{2}}{x_{2} z_{2}}
$$

Example:

$$
\begin{aligned}
& V=\pi r^{2} h \\
& y=K \cdot x \cdot z \\
& v \uparrow r \uparrow h \uparrow
\end{aligned}
$$

Ex 2) y varies jointly as x and z. Find y_{1} when $x_{0}=10, z_{0}=5$, if $y_{2}=12$ when $z_{2}=8$ and $x_{2}=3$.

$$
\frac{y_{1}}{x_{1} z_{1}}=\frac{y_{2}}{x_{2} z_{2}} \frac{y_{1}}{10.5}=\frac{12}{3.8}
$$

$$
\begin{aligned}
& \frac{y_{1}}{50}=\frac{12}{24} \\
& y_{1}=\frac{1}{2} \\
& \frac{50 \cdot 1}{2}=y_{1}=25
\end{aligned}
$$

February 28, 2013

