Advanced Algebra Chapter 5 Outline

18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 64, 66, 68, 70 (25)

<u>5-2</u> 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 46, 48, 56, 57 (20)

<u>5-3</u> 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 53, 54, 60, 61, 72 (20)

Worksheets 5-1 through 5-3

Quiz on 5-1 through 5-3

5-4

Day 1: worksheet Day 2: worksheet Day 3: worksheet

16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 58, 59, 60, 61, 66 (25)

<u>5-6</u>

Day 1: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 (20) **Day 2:** 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 52, 53, 57, 58, 60, 62 (18)

Worksheets 5-4 through 5-6

Quiz 5-4 through 5-6

<u>5-7</u> 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 67, 68 (20)

14, 16, 18, 20, 22, 24, 26, 28, 30, 39, 41, 45, 48, 50, 52 (15)

<u>5-9</u>

Day 1: 4, 5, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25 (13)

Day 2: 26, 28, 30, 32, 34, 36, 38, 40, 46, 48, 50, 52, 54, 56, 58, 62, 67, 68, 72, 74, 76 (20)

Review

Pages 277-280 12-74 evens, skip 24

Review

Pages 277-280, 11-75 odds

Chapter 5 Test

5-1 Monomials

Objective: Multiply and Divide Monomials Use expressions written in scientific form.

Monomials:

$$\frac{1}{5}$$
 5b, -w, 23, x^2 , $\frac{1}{3}x^3y^3$

Not Monomials:

- -no variables in denominator
- -no variables w/ negative exponent
- -no variables under radicals

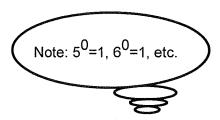
$$5x^2y^4$$

Coefficent:

Degree(sum of exp. variables):

Rules

$$a^{-n}=1/a^n$$
 $1/a^{-n}=a^n$


Ex:
$$2^{-3}=1/2^3=1/8$$

 $1/b^{-8}=b^{-8}$

 $a^{m}a^{n}=a^{m+n}$

 $4^{2}*4^{6}=4^{8}$

3. Quotient of Powers

$$a^{m}/a^{n}=a^{m-n}$$
 $7^{6}/7^{2}=7^{4}$

2. Product of Powers

Power of a power:
$$(a^{m})^{n} = a^{mn}$$

 $(7^{2})^{5} = 7^{10}$

Power of a product:
$$(ab)^n = a^n b^n$$

$$(5a)^2 = 25a^2$$

Power of a quotient:
$$(a/b)^n = a^n/b^n$$

$$(x/y)^6 = x^6/y^6$$

 $(a/b)^{-n} = (b/a)^n = b^n/a^n$
 $(x/y)^{-3} = y^3/x^3$

$$(x/y)^{-3} = y^3/x^3$$

Simplify

Ex1: (-2a³b)(-5ab⁴)

Ex2: s^2/s^{10}

Ex 3: $(b^2)^4$

Ex 4: $(-3c^2d^5)^3$

Ex 5) (<u>-2a</u>)⁵

Ex 6: $(x_3)^{-4}$

Ex 7: $(\frac{-3a^{5y}}{a^{6y}b^4})^5$

Scientific Notation: used to express very large or very small numbers

 $a \times 10^{n}$ where $1 \le a < 10$, n--any integer

Ex 8: Express in Scientific Notation.

- A) 4,560,000
- B) .000092

Ex 9: Evaluate. Express each in Scientific Notation.

A)
$$(5 \times 10^3)(7 \times 10^8)$$

B)
$$(1.8 \times 10^{-4})(4 \times 10^{7})$$

Ex 10: There are about 5×10^6 red blood cells in one ml of blood. A certain blood sample contains 8.32×10^6 red blood cells. About how many ml of blood are in the sample?

5-2 Polynomials

Objective: Add, subtract, and Multiply Polynomials.

Polynomial: a monomial or sum of monomials.

Binomial- 2 unlike terms

ie.
$$xy + z^3$$

Trinomial- 3 unlike terms

ie.
$$x^2 + 3x + 1$$

Degree of a Polynomial- The degree of the monomial with the greatest degree

$$4x^3 + 3x^2$$
 degree 3 $5x^5y + 4x^3y^6$ degree 9

$$5x^{5}y + 4x^{3}y^{6}$$

I. Determine whether each is a polynomial and state the degree.

A.
$$c^2 - 4\sqrt{c} + 18$$

B.
$$-16p^5 + (3/4)p^2q^7$$

II. Simplify

A.
$$(2a^3 + 5a - 7) - (a^3 - 3a + 2)$$

B.
$$-y(4y^2 + 2y - 3)$$

C.
$$(2p + 3)(4p + 1)$$

	2			
D. ($(a^2 +$	3a -	4)(a	+2)

E.
$$(n^2 + 6n - 2)(n + 4)$$

5-3 Dividing Polynomials

Objective: Divide Polynomials using long and synthetic division.

I. Dividing by a monomial

Ex1)
$$\frac{5a^2b - 15ab^3 + 10a^3b^4}{5ab}$$

II. Long Division

EX 2.
$$(z^2 + 2z - 24)/(z - 4)$$

EX 3.
$$(a^2 - 5a + 3)(a - 2)^{-1}$$

EX 4.
$$(x^3 - 2x - 15)/(x - 5)$$

III. Synthetic Division—is a faster way to divide polynomials. But, it can only be used when the divisor is in the form x - c. The coefficient in front of the divisor must be 1.

EX 5.
$$(x^3 - 4x^2 + 6x - 4)/(x - 2)$$

EX 6.
$$(5x^4 - 13x^2 + 10x - 8)/(x + 1)$$

5-4 Factoring of Polynomials Day 1

Objective: Factor polynomials.

Simplify polynomial quotients by factoring.

Greatest Common Factor (GCF)

EX 1.
$$10a^3b^2 + 15a^2b - 5ab^3$$

EX 2.
$$6x^2y^2 - 2xy^2 + 6x^3y$$

Difference of 2 Squares:
$$a^2 - b^2 = (a + b)(a - b)$$

Sum of 2 Cubes:
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

Difference of 2 Cubes:
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Ex3)
$$x^2 - 36$$

Ex4)
$$y^4 - z^2$$

Ex5)
$$p^4 - 1$$

Ex6)
$$2^3 + p^3$$

Ex7)
$$e^3 d^3 + 27$$

Ex8)
$$x^3 - y^3$$

5 - 4 Day 2

Trinomials

Ex9)
$$x^2 + 7x + 6$$

Ex10)
$$x^2 + 12x + 36$$

Ex11)
$$x^2 - 6x - 27$$

$$Ex12) 2a^2 + 3a + 1$$

Ex13)
$$3n^2 + 21n - 24$$

Ex14)
$$6c^2 + 13c + 6$$

5-4 Day 3

Grouping

EX 1.
$$a^3 - 4a^2 + 3a - 12$$

EX 2.
$$x^3 + 5x^2 - 2x - 10$$

Simplifying Quotients

EX 3.
$$\frac{x^2 + 2x - 3}{x^2 + 7x + 12}$$

EX 4.
$$\frac{a^2 - a - 6}{a^2 + 7a + 10}$$

EX 5.
$$64x^6 - y^6$$

5-5 Roots and Real Numbers

Objective: Simplify Radicals.

Use a calculator to approximate radicals.

Square Root:7 is a square root of 49: 7x7=49.

6 is a square root of 36: 6x6=36.

-6 is a square root of 36: -6x-6=36.

6 (the nonnegative one) is called the **principal root**.

-Finding the square root and squaring are inverse operations.

-Raising a number to the nth power and finding the nth root are inverse operations.

Powers	Factors	Roots
$a^3 = 125$	5x5x5=125	5 is a cube root of 125
$a^{4}=81$	3x3x3x3=81	3 is a fourth root of 81
$a^{5}=32$	2x2x2x2x2=32	2 is a fifth root of 32
$a^n = b$	axaa=b	a is an nth root of b.

 $n\sqrt{50}$ indicates and nth root

n: index, 50: radicand, $\sqrt{\cdot}$: radical sign

-See chart on P.246.

Simplify

EX 1.
$$\pm \sqrt{16x^6}$$

EX 5.
$$8\sqrt{x}$$
8

EX 2.
$$-\sqrt{(q^3+5)^4}$$

EX 6.
$$\sqrt[4]{81(a+1)^{12}}$$

EX 3.
$$\sqrt{243}a^{10}b^{15}$$

EX 7.
$$\sqrt[5]{243(x+2)^{15}}$$

Approximate each value to the three decimal places.

EX 10.
$$5\sqrt{891}$$

EX 11.
$$\sqrt[4]{(3500)^2}$$

5-6 Radical Expressions Day 1

Simplify radical expressions. Objective:

Add, Subtract, multiply, and divide radical expressions.

Product Property of Radicals n>1

- 1. If n is even and a and b are nonnegative, then $\sqrt[n]{ab} = \sqrt[n]{a} * \sqrt[n]{b}$
- 2. If n is odd, then $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$

Steps to Simplifying a square root

- 1. Factor the radicand into as many squares as possible
- 2. Use the product property to isolate the perfect squares
- 3. Simplify each

Simplify

Ex1)
$$\sqrt{16p^8q^7} =$$

Ex2)
$$\sqrt{25a^4b^9} =$$

Quotient Property

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Simplifying Quotients

Ex3)
$$\sqrt{\frac{y^8}{x^7}}$$

$$\sqrt[3]{\frac{2}{9x}}$$

Ex5)
$$\sqrt[5]{\frac{5}{4a}}$$

Multiplying Radicals

Ex6)
$$6\sqrt[3]{9n^2} * 3\sqrt[3]{24n}$$

Ex7)
$$5\sqrt[3]{100a^2} * \sqrt[3]{10a}$$

"Mixed" Simplifying

Ex8)
$$\sqrt[4]{16x^5y^4}$$

Ex9)
$$\sqrt{\frac{7}{8y}}$$

Ex10)
$$-2\sqrt{15} * 4\sqrt{21}$$

5.6 Radical Expressions Day 2

** Bottom of Page 252 **

Add and Subtract Radicals

Ex1)
$$2\sqrt{12} - 3\sqrt{27} + 2\sqrt{48}$$

Ex2)
$$3\sqrt{45} - 5\sqrt{80} + 4\sqrt{20}$$

Multiplying Radials

Ex3)
$$(3\sqrt{5} - 2\sqrt{3})(2 - \sqrt{3})$$
 Ex4) $(4\sqrt{2} + 7)(4\sqrt{2} - 7)$

Ex4)
$$(4\sqrt{2} + 7)(4\sqrt{2} - 7)$$

Rationalizing Denominator using Conjugates:

 $a\sqrt{b}$ - $c\sqrt{d}$ and $a\sqrt{b}$ + $c\sqrt{d}$ are conjugates.

EX 5.
$$\frac{1-\sqrt{3}}{5+\sqrt{3}}$$

EX 6.
$$\frac{2+\sqrt{3}}{4-\sqrt{3}}$$

5-7 Rational Exponents

Objective:

Write expressions with rational exponents in radical

from and vice versa.

Simplify expressions in exponential or radical form.

Key Ideas

$$b^{1/n} = n\sqrt{b}$$

$$b^{m/n} = n\sqrt{b^m} = (n\sqrt{b})^m$$

$$b^{m/n} = (b^m)^{1/n} = (b^{1/n})^m$$

<u>I. Radical Form</u>-Write each expression in radical form.

EX 1.
$$a^{1/4}$$

EX 3.
$$m^{3/2}$$

II. Exponential Form -Write each radical using rational exponents.

EX 5.
$$\sqrt{w^5}$$

EX 6.
$$8\sqrt{c^3}$$

III. Evaluate

EX 8.
$$32^{2/5}$$

IV. Simplify
-Read P.260
-If you start the problem with radicals, answer with radicals. If you start with rational exponents, answer with rational exponents.

EX 10.
$$x^{1/5} \cdot x^{7/5}$$

-To reduce the index, look for perfect squares, cubes, 4ths, then rewrite and simplify.

EX 12.
$$\frac{8\sqrt{81}}{6\sqrt{3}}$$

EX 13.
$$6\sqrt{4x^4}$$

EX 14.
$$4\sqrt{9z^2}$$

5-8 Radical Equations and Inequalities

Objective: Solve equations and inequalities containing radicals.

Isolate the radical!!

I. Radical Equations

EX 1.
$$\sqrt{(x+1)} + 2 = 4$$

EX 2.
$$\sqrt{(y-2)} - 1 = 5$$

EX 3.
$$\sqrt{x-15} = 3 - \sqrt{x}$$

II. Cube Root Equations

EX 4.
$$3(5n-1)^{1/3} - 2 = 0$$

EX 5.
$$(3y+1)^{1/3} + 5 = 0$$

III. Radical Inequalities

EX 6.
$$2 + \sqrt{(4x-4)} \le 6$$

EX 7.
$$\sqrt{(3x-6)} + 4 \le 7$$

5-9	Com	nlex	Num	hers

Objective: Add, subtract, multiply and divide complex numbers.

Day 1

Where did the imaginary number come from????

So let us take a look at what happens to the i.

Summary of the things you need to know for today:

Standard Form: a + bi, $i^2 = -1$, $i = \sqrt{-1}$

II. Simplify.

EX 1. √-18

EX 2. √-28

EX 3. $\sqrt{-125}x^{5}$

EX 4. $\sqrt{-32y^3}$

EX 5. -2i · 7i

EX 6. $\sqrt{-12} \cdot \sqrt{-2}$

Day 2 on 5-9 Simplify.

EX 8.
$$(6-4i)+(1+3i)$$

EX 9.
$$(4-6i)-(1+3i)$$

EX 10.
$$\frac{5i}{3+2i}$$

Solve the equation.

EX 12.
$$3x^2 + 48 = 0$$

EX 13.
$$5y^2 + 20 = 0$$

AA Ch 5 Study Guide

5.1 Monomials

- Simplify monomials (1-term polynomials)
- No negative exponents allowed
- Know what an exponent of zero means
- Know rules for when to add, subtract, multiply exponents
- Divide Monomials
- Know scientific notation WORD PROBLEM with scientific notation

5.2 Polynomials

- Add & subtract polynomials combine like terms
- Multiply polynomials (distributive property/FOIL)

5.3 Dividing Polynomials

- Long Division & Synthetic Division (MUST know both!)
- Remember to fill missing terms with zero(s)

5.4 Factoring Polynomials

- Factor out a Monomial
- Factor Difference of Squares
- Factor Difference of Cubes
- Factor Sum of Cubes
- Factor Trinomials $ax^2 + bx + c$ with a = 1
- Factor Trinomials $ax^2 + bx + c$ with a not 1
- Factor with Grouping
- Factor with Division problems

5.5 Roots of Real Numbers

- Know when a negative in the radicand is possible
- Find nth roots of perfect squares, perfect cubes, perfect fourths, etc.

5.6 Radical Expressions

- Simplify roots when they are NOT perfect
- Multiply with roots and simplify
- Add/Subtract roots (remember only if the radicands are the same)
- FOIL (multiply and add/subtract) with roots
- Rationalize denominator (when denominator is a monomial)
- Rationalize denominator (when denominator is a binomial) Multiply by its conjugate

5.7 Rational Exponents

- Interchange between radical form and using rational exponents
- Simplify remember no negative exponents and no fractional exponents in denominator (the only way you
 get good at this is with lots of exposure to a variety of problems which means practice!)

5.8 Radical Equations and Inequalities

- Solve equations/inequalities with radicals, remembering to ALWAYS check your answers
- WORD PROBLEM with solving radical equations

5.9 Complex Numbers

- Simplify radicals of negative numbers
- Add/Subtract/Multiply/Divide with complex numbers
- No i allowed in denominator multiply by complex conjugate
- WORD PROBLEM with complex numbers like in homework and on page 273