Advanced Algebra Chapter 6 Outline

<u>6-1</u> 14, 16, 18, 20, 22, 24, 32, 34, 36, 38, 40, 42, 44, 45, 48, 49, 50, 64, 66, 68 (20)

<u>6-2</u> 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 42, 43, 44, 46, 50, 58, 60, 63 (20)

<u>6-3</u> 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 42, 44, 51, 52, 54, 57, 58, 64 (20)

Worksheets on 6-1, 6-2, and 6-3

Quiz on 6-1, 6-2, and 6-3

6-4

Day 1: 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 (16)
Day 2: 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 48, 49, 50, 57, 58, 61, 64, 69, 70 (20)

<u>6-5</u>
14, 16, 18, 20, 22, 24, 28, 29, 30, 40, 41, 42, 43, 44, 48, 49, 52, 55, 56, 57 (20)

6-616, 18, 20, 22, 24, 26, 28, 30, 32, 40, 42, 44, 45, 46, 48, 49, 50, 55, 56, 60 (20)

Quiz on 6-4 and 6-5

<u>6-7</u> 14, 16, 18, 20, 22, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 43, 52, 59, 62, 63 (20)

Review

Page 342, 1-30

Review

Page 336-340, 1-59 odd

Chapter 6 Test

6-1 Graphing Quadratic Functions

Objective:

Graph quadratic functions.

Find and interpret the maximum and minimum values of quadratic functions.

** Use Graphing Calculator**

Axis of symmetry : $x = \frac{-b}{2a}$ Vertex: x coordinate is $\frac{-b}{2a}$

Y-intercept is when x = 0, so $a(0)^2 + b(0) + c$, is just c

Max: opens down and a is negative

Ex1) Graph $f(x)=x^2+8x+9$ with a calculator and use formulas.

Vertex:

Line if symmetry:

Y-intercept:

Min/Max:

Table of values: x y

Ex2) Graph $f(x) = x^2 + 3x - 1$ with a calculator and use formulas.

Vertex:

Line if symmetry:

Y-intercept:

Min/Max:

Table of values: x y

** Do #14 from the Homework		

6-2 Solving Quadratic Equations by Graphing

Objective: Solve quadratic equations by graphing.

Estimate solutions of quadratic equations by graphing.

**The solutions to a quadratic are called roots. We find them by finding the zeros of the function. The zeros are the x-intercepts.

3 Possibilities

One Real Solution

Two Real Solutions

No Real Solutions

EX 1. Solve $x^2 - 3x - 4 = 0$ by graphing.

EX 2. Solve x^2 - 4x = -4 by graphing.

EX 3. Solve $x^2 + 5 = 4x$ by graphing.

EX 4. P.296 discuss Ex 5., graphs, and do #22.

6.3 Solving Quadratic Equations by Factoring

Zero Product Property

ab=0 Either a or b, or both are equal to 0

$$(x+5)(x+7) = 0$$
, then $x+5=0$ or $x+7=0$

Objective:

*Solve by Factoring

*Write a quadratic with given roots

I. Solve by Factoring

EX 1.
$$x^2 = 6x$$

EX 2.
$$x^2 = -4x$$

EX 3.
$$x^2 - 16x + 64 = 0$$
 EX 4. $4x^2 - 7x = n$

$$EX 4 4x^2 - 7x = n$$

EX 5.
$$x^2 - 3x - 28 = 0$$

EX 6.
$$3x^2 + 10x - 8 = 0$$

II. Write an equation given roots

EX 7.
$$x = -2, 7$$

EX 8.
$$x = -6, -8$$

EX 9.
$$x = 1/3, 5$$

6.4 Completing the Square Day 1

Objective: Solve quadratic equations by using the Square Root Property and completing the square.

Square Root Property

$$x^2 = n$$

$$x = \pm \sqrt{n}$$

EX 1.
$$x^2 + 10x + 25 = 49$$

EX 2.
$$x^2 + 14x + 49 = 64$$

EX 3.
$$x^2 - 10x + 25 = 12$$

EX 4.
$$x^2 - 6x + 9 = 32$$

II. Find the value of C that makes each trinomial a perfect square.

Then write each as a perfect square.

EX 5.
$$x^2 + 16x + c$$

EX 8.
$$x^2 - .8x + c$$

EX 6.
$$x^2 + 12x + c$$

EX 9.
$$x^2 + 1.2x + c$$

EX 7.
$$x^2 - 5x + c$$

6. 4 Completing the Square Day 2

I. Completing the Square (when a =1 of $ax^2 + bx + c = 0$)

EX 1.
$$x^2 + 8x - 20 = 0$$
 EX 2. $x^2 + 4x - 12 = 0$

EX 2.
$$x^2 + 4x - 12 = 0$$

II. Completing the Square (when $a\neq 1$ of $ax^2 + bx + c = 0$)

EX 3.
$$2x^2 - 6x - 2 = 0$$

EX 4.
$$2x^2 - 5x + 3 = 0$$

III. Equation with Complex Solutions

EX 5.
$$x^2 + 4x + 11 = 0$$

EX 6.
$$x^2 + 2x + 3 = 0$$

6.5 The Quadratic Formula & The Discriminant

Objective: Solve quadratic equations by using the quadratic formula. Use the discriminant to determine the number and type of solutions.

Quadratic Formula: If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

I. Solve using the Quadratic Formula

EX 1.
$$x^2 - 8x = 33$$

EX 2.
$$x^2 - 34x + 289 = 0$$

EX 3.
$$2x^2 + 4x - 5 = 0$$

EX 4.
$$x^2 - 4x = -13$$

Discriminant- Tells how many and what kind of solutions.

$$b^2$$
 - 4ac > 0 2 real roots (rational/irrational)

$$b^2 - 4ac = 0$$
 1 real root

$$b^2$$
 - $4ac < 0$ No real roots, 2 complex (imaginary).

NOTE: if b^2 - 4ac > 0 and it is a perfect square: rational and it is not a perfect square: irrational

II. How many roots and what type?

EX 5.
$$x^2 + 6x + 9 = 0$$

EX7.
$$x^2 + 8x - 4 = 0$$

EX 6.
$$x^2 + 3x + 5 = 0$$

6.6 Analyzing Graphs of Quadratic Functions

Objective: Analyze quadratic functions of the form

 $y = a(x - h)^2 + k$ and write a quadratic in vertex form.

Explore: $y = x^2$ is called a parent function.

Graph and discuss:

1.
$$y = x^2 + 3$$

1.
$$y = (x - 2)^2$$

1.
$$y = x^2 + 3$$
 1. $y = (x - 2)^2$ 1. $y = 5(x - 2)^2$
2. $y = x^2 - 6$ 2. $y = (x + 6)^2$ 2. $y = -4(x + 6)^2$

2.
$$y = x^2 - 6$$

2.
$$y = (x + 6)^2$$

2.
$$y = -4(x+6)^2$$

3.
$$y = (1/3)(x+3)^2$$

Horizontal translation

Vertex Form:

$$y = a(x - h)^2 + k$$
 Vertical Translation

a>0, opens up

a<0, opens down

(h,k) = vertex

|a|>1, narrower graph of $y=x^2$

x = h Line of symmetry

|a| < 1, wider graph $y = x^2$

I. Write in vertex form, then ID vertex, axis of symmetry, and direction of opening.

EX 1.
$$y = x^2 + 8x - 5$$

EX 2.
$$y = x^2 + 2x + 4$$

EX 3.
$$y = -3x^2 + 6x - 1$$

EX 4.
$$y = -2x^2 - 4x + 2$$

EX 5. Vertex: (1,2)		
Point: (3,4)		
EX 6. Vertex: (-1,4)		
Point: (2,1)		

$$0 \le x^2 + 1$$

No solution

I. Graph a quadratic inequality.

Ex1)
$$y > -x^2 - 6x-7$$

Ex2)
$$y > x^2 - 3x + 2$$

II. Solve by Graphing

Ex3)
$$x^2 + 2x - 3 > 0$$

Ex4)
$$0 > 3x^2 - 7x - 1$$

III. Solve Algebraically

Ex5)
$$x^2 + x > 6$$

Ex6)
$$x^2 + x \le 2$$