Advanced Algebra Chapter 7 Outline

<u>7-1</u> 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 47, 48, 57, 58 (20)

<u>7-2</u> 14, 16, 18, 20, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 41, 42, 48, 50 (20)

<u>7-3</u>

Day 1: Study Guide 1-16 (16)

Day 2: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34 (22)

<u>7-4</u> 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 37, 38, 39, 40, 47, 49, 52 (20)

Review/Quiz on 7-1, 7-2, and 7-3

<u>7-5</u> 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 43, 44, 45, 52, 53 (20)

<u>7-6</u> 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 46, 50, 52, 56 (20)

<u>7-7</u>

Day 1: 2, 3, 4, 5, 6, 7, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 (18)

Day 2: 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 (20)

Worksheets

Quiz on 7-4, 7-5, 7-6, and 7-7

<u>7-8</u> 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 39, 40, 41, 46, 47, 48, 51 (20)

<u>7-9</u> 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 39, 40, 42, 44 (18)

Review

Pages 400-404, 2-58 even

Review

Page 400-404, 1-57 odd

Chapter 7 Test

7-1 Polynomial Functions

Objective: Evaluate polynomial functions.

ID general shapes and graphs of polynomial functions.

P.346

Polynomial Constant	Expression 9	Degree 0	Leading Coefficient
Linear	x - 2	1	1
Quadratic	$3x^2 + 4x - 5$	2	3
Cubic	4x - 6	3	4
General	$a_0x^n + a_1x^{n-1} + + a_{n-2}x^2 + a_{n-1}x + a_n$	n	a_0

^{*} Polynomial in one variable

Greatest exponent of its variable

Coefficient of term w/ highest degree

I. Find degree, leading coefficient, & if polynomial in one variable.

Ex1)
$$7z^3 - 4z^2 + z$$

Ex3)
$$3c^2 + 4c - \frac{2}{c}$$

Ex4)
$$9y - 3y^2 + y^4$$

II. Evaluate a Polynomial

Ex5)
$$f(r) = 2r^2 - 3r + 1$$
, Find $f(4)$ and $f(6)$

Ex6)
$$p(x) = 2x^4 - x^3 + 3x$$
. Find $p(y^3)$

Ex7)
$$b(m) = 2m^2 + m + 1$$
 Find $b(2x-1) - 3b(x)$

III. Graphs of Polynomial Functions

- ** Pg. 348 Chart Discuss looks of Graph ** Pg. 349 Chart Discuss end behavior

Ex8) For each Describe: 1. End Behavior 2. Odd/even degree #. # of real zeros

7. 2 Graphing Polynomial Functions

<u>Objective:</u> Graph polynomial functions and locate their zeros Find maxima & minima of polynomial functions

Ignore book directions since we are using graphing calculators

- A) Graph by making a table of values (≈ 6)
- B) Find the zeros
- C) Find maxima & Minima
 - ** Find all info before Graphing

Ex1)
$$F(x) = -x^3 - 4x^2 + 5$$

#14 Ex2)
$$f(x) = x^3 - 2x^2 + 6$$

#16 Optional

7.3 Solving Equations Using Quadratic Techniques

Objective: Write expressions in Quadratic Form

Quadratic Form: $au^2 + bu + c$

for any a,b,c where a $\neq 0$ and u is some expression in x.

I. Write each Expression in Quadratic Form, if possible.

Ex1)
$$x^4 + 13x^2 + 36$$

Ex2)
$$2x^{6} + x^{3} + 9$$

Ex3)
$$10b^{4} + 3b^{2} - 11$$

Ex5)
$$7x^{10} + 6$$

Ex6)
$$12x^{8} - x^{2} + 10$$

$$(2.5)^{4} \times (2.5)^{3}$$

Ex8)
$$x - 9x^{1/2} + 8$$

Ex9)
$$x^{2/3} + 2x^{1/3} - 4$$

7.3 Solving Equations Using Quadratic Techniques

Objective: Use Quadratic techniques to solve equations

I. Solve using Quadratic Techniques

Ex1)
$$x^4 - 13x^2 + 36 = 0$$

Ex2)
$$x^4 - 29x^2 + 100 = 0$$

Ex3)
$$x^{2/3} - 6x^{1/3} + 5 = 0$$

Ex4).
$$x^{1/2} - x^{1/4} - 6 = 0$$

Ex5)
$$x - 6\sqrt{x} = 7$$

Ex6)
$$x + \sqrt{x} = 12$$

Ex7)
$$x^3 + 343 = 0$$

7.4 The Remainder & Factor Theorems

Objective: Evaluate functions using synthetic substitution

Determine whether a binomial is a factor of a polynomial by using

Determine whether a binomial is a factor of a polynomial by using synthetic substitution

$$f(a) = 4a^2 - 3a + 6$$
 divide this by $(a - 2)$

$$f(2) = 4(2)^2 - 3(2) + 6 = 16 - 6 + 6 = 16$$

** This Illustrates the Remainder Theorem:

If f(x) is divided by x-a, then the remainder is the constant f(a).

Dividend equals quotient times divisor plus remainder

$$f(x) = q(x)$$
 $x (x-a) + f(a)$

Ex1) Find f(4) if
$$f(x)=3x^4-2x^3+x^2-2$$
.

Ex2) Show that x-3 is a factor of
$$x^3 + 4x^2 - 15x - 18$$
.

Factor Theorem: The binomial x-a is a factor of the polynomial f(x) if and only if f(a) = 0

Ex3) Show that x+3 is a factor of
$$f(x) = x^3 + 6x^2 - x - 30$$
.

Ex4) Find all factors of
$$v(x) = x^3 + 3x^2 - 36x + 32$$
 if $x - 4$ is a factor.

Ex5)
$$V(x)=x^3 + 7x^2 + 2x - 40$$
. Find the missing measures.

7.5 Roots and Zeros

<u>Objective:</u> Determine the # and types of roots for a polynomial equation. Find the zeros of a polynomial function.

Fundamental Theorem of Algebra pg. 371

- Every polynomial equation of degree greater than zero has at least 1 root in the set of complex numbers.
- I. Determine the # and Type of Roots

Ex1)
$$a - 10 = 0$$

Ex2)
$$x^2 + 2x - 48 = 0$$

Ex3)
$$3a^3 + 18a = 0$$

Ex4)
$$v^4 - 16 = 0$$

-So p(x) of degree n will have n roots including the imaginary ones.

II. Decartes Rule of Signs: finds # of positive or negative zeros pg.372

Ex5)

Positive: Use P(x)

$$p(x) = x^{5} - 6x^{4} - 3x^{3} + 7x^{2} - 8x + 1$$

4 sign changes(y's), so there are 4,2, or 0 positive real zeros.

Negative: use P(-x)

$$P(-x) = (-x)^{5} - 6(-x)^{4} - 3(-x)^{3} + 7(-x)^{2} - 8(-x) + 1$$

$$P(-x) = -x^{5} - 6x^{4} + 3x^{3} + 7x^{2} + 8x + 1$$

One sign change(y), so there is 1 negative real zero

Possible Combinations of Zeros

Positive Real	Negative Real	Imaginary	<u>Total</u>
4	1	0	5
2	1	2	5
0	1	4	5

III. Find all zeros of the polynomial (Hint: Use calc to find rational zeros first)

EX 6.
$$f(x) = x^3 - 4x^2 + 6x - 4$$

EX 7.
$$f(x) = x^3 - x^2 + 2x + 4$$

IV. Write a polynomial given zeros

Ex8)
$$x = 4, 4-i$$

Ex9)
$$x = 3, 2-i$$

7.6 Rational Zero Theorem

Objective: ID the possible rational zeros of a polynomial function Find all rational zeros of a polynomial function

Rational Zero Theorem: gives a finite list of all possible rational zeros to help narrow down choices.

I. ID all Possible Zeros Using

Ex1)
$$f(x) = 2x^3 - 11x^2 + 12x + 9$$
Q
P

Q: The leading coefficient

P: The constant

 $\frac{P}{Q} = \frac{\text{all factors of P}}{\text{all factors of Q}} : \frac{\pm 1, \pm 3, \pm 9}{\pm 1, \pm 2}$

Possible Rational Zeros $\pm 1, \pm 1/2, \pm 3, \pm 3/2, \pm 9, \pm 9/2$ 12 potential zeros

Ex2) $F(x) = 3x^4 - x^3 + 4$

II. Find all Zeros.

Ex3)
$$f(x) = 2x^4 - 13x^3 + 23x^2 - 52x + 60$$

Ex4)
$$f(x) = x^4 + x^3 - 19x^2 + 11x + 30$$

Ex5)	v=1120 ft ³	Find dimensions.
-		

7.7 Operations of Functions

<u>Objective:</u> Find the sum, difference, product, and quotient of functions Find the composition of functions

I. Operations with Functions

Let
$$f(x) = x+2$$
, $g(x) = 3x$, then

$$Sum:(f + g)(x) = f(x) + g(x)$$

Difference:
$$(f - g)(x) = f(x) - g(x)$$

Product:
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Quotient:
$$(f/g)(x) = f(x)/g(x)$$

Ex1)
$$f(x) = 3x^2 + 7x$$
 $g(x) = 2x^2 - x - 1$, Find each function

II. Composition of Functions: $(f \circ g)(x) = f(g(x))$

- To evaluate $f \circ g$, evaluate g(x) first, then use the range of g as the domain of a and evaluate f(x).

Ex2)
$$f = \{(3, 4), (2,3), (-5,0)\}\$$

 $g = \{(3,-5), (4,3), (0,2)\}\$

Ex3)
$$f(x) = \{(2,6), (9,4), (7,7), (0,-1)\}$$

 $g(x) = \{(7,0), (-1,7), (4,9), (8,2)\}$

-So $f \circ g$ does not equal $g \circ f$ in most instances, therefore, the order in which you compose is important.

7.7 Operations with Functions Day 2

I. Simplifying Composition of Functions

Ex1)
$$f(x) = x + 3$$
 $g(x) = x^2 + x - 1$ Find $(f \circ g)x$ and $(g \circ f)x$.

Evaluate if x = 2.

Ex2)
$$f(x) = 3x^2 - x + 4$$
 $g(x) = 2x - 1$ $h(x) = x^2 - 3$

Evaluate x = -2

A.
$$f(g(-1))=$$

B.
$$h(g(4))=$$

C.
$$(f \circ (h \circ g))(2)=$$

Ex3) Tracy has \$100 deducted from every paycheck for retirement before taxes are applied, which reduces her taxable income. Her state income tax rate is 4%. If Tracy earns \$1500 every pay period, find the difference in her net income if she has the retirement deduction before or after state taxes.

7.8 Inverse Functions & Relations

<u>Objective:</u> Find the inverse of a function or relation

Determine whether 2 functions or relations are inverses

I. Relations - set of ordered pairs
 Inverse Relation - set of ordered pairs obtained by reversing the coordinates of each original ordered pairs

Ex) Relation:
$$f = \{(1,2), (3,4), (5,6)\}$$

 $f^{-1} = \{(2,1), (4,3), (6,5)\}$

II. Finding Inverses 1)switch x + y 2) Solve for y

Ex1)
$$f(x) = \frac{x+6}{2}$$

Ex2)
$$f(x) = \frac{-1}{2}x + 1$$

III. Inverse functions - f(g(x)) = x and g(f(x))=x then the 2 functions are inverses EX 3. f(x) = 5x + 10 g(x)=(1/5)x - 2

EX 4.
$$f(x) = 6x + 2$$
 $g(x) = x - (1/3)$

Function:

Inverse function:

Function:

Inverse function:

7.9 Square Root Functions

Objective: Graph and analyze square root functions Graph Square root inequalities.

I. Square Root Equations

Ex1)
$$y=\sqrt{3x+4}$$

State domain, range, x and y intercepts.

Ex2)
$$y = \sqrt{\frac{3}{2}x-1}$$

Ex2) $y = \sqrt{\frac{3}{2} x - 1}$ State domain, range, x and y intercepts.

II. Square Root Inequalities

Ex3)
$$y > \sqrt{3x + 5}$$

Ex4)
$$y \le \sqrt{4 + \frac{3}{2} x}$$