Algebra 1-8: The Pythagorean Theorem
Warm-Up
Evaluate.

4. $\sqrt{ }\left(4^{2}+2^{2}\right)=\sqrt{4^{2}+2^{2}}=\sqrt{16+4}=\sqrt{20}=4.47$
5. $\sqrt{ }\left(6^{2}+3^{2}\right)=\sqrt{6^{2}+3^{2}}=\sqrt{36+9}=\sqrt{45}=6.71$
6. $5\left(1^{2}+8^{2}\right)=\sqrt{1^{2}+8^{2}}=\sqrt{1+64}=\sqrt{65}=8.06$

e lengths
on aright

Example Problems

1. Find the length of the hypotenuse if the legs of a right triangle are 3 inches and 2 inches long.

$$
\begin{aligned}
& 3^{2}+z^{2}=c^{2} \\
& 9+\frac{4}{4}=c^{2} \\
& \sqrt{13}=c^{2}
\end{aligned}
$$

* Not (-) since it's a length

2. Find the length of the hypotenuse if the legs of a right triangle are 4 feet and 5 feet long.
\qquad

$$
\begin{aligned}
& 5^{2}+4^{2}=c^{2} \\
& 25+16=c^{2} \\
& \sqrt{41}=\sqrt{c^{2}}
\end{aligned}
$$

$$
\begin{gathered}
C=\sqrt{41} \text { or } 6.40 \\
\text { feet }
\end{gathered}
$$

3. To get to school, Ed travels 2.5 miles east and 1.5 miles north. If he could travel to school in a straight line, how far would he have to go?

4. Central Park in NYC is shaped like a rectangle.

It is .8 kilometers wide and 4 kilometers long. They want to make a path from one corner to the opposite corner. How long will it be?

4.08 km

$$
c=4.079
$$

