Algebra 2-2: Special Numbers in Multiplication
Warm-Up

1. Find the area of the shaded region.

$$
\begin{aligned}
\text { Area of Big : } & 4 \times 15=60 \mathrm{~cm}^{2} \\
& 60 \mathrm{~cm}^{2} \\
& \frac{9 \mathrm{~cm}^{2}}{5 / \mathrm{cm}}
\end{aligned}
$$

2. Each small rectangle has length y and width x.
a. Express the area f the large rectangle as length times width.
b. Simplify your answer to part a.

Example

\# times its reciprocal $=1$

Example Problems Give the Reciprocal of each number.
$\begin{array}{lll}\text { 1. } \frac{3}{4} & \frac{4 / 3}{8 / 1} & \text { 2. } 9\end{array} \frac{\frac{1}{9}}{\text { 3. } \frac{1}{8} \frac{8}{5}} \begin{array}{ll}\text { 4.1 } & \frac{5}{8} \\ \text { 5. } \frac{-2}{1} & \frac{1}{-2}\end{array}$

$$
1+\frac{3}{55}=\frac{8}{5}
$$

Are the numbers below reciprocals? Show why or why not.

$$
\begin{array}{ll}
7.50 .2 \\
400 & \frac{2}{10}=\frac{5}{5}
\end{array} \frac{1}{5}=\frac{5}{5}=1 \quad 8.525(.5)(5)=2.5
$$

10. $-1 \& 1$

$$
(-4)(-4)=-1.6
$$

$$
\begin{align*}
& \text { Giveme a set of } \\
& \text { relprocals. } \tag{No}\\
& 1 \cdot 1=1 \\
& \frac{5}{1} \cdot \frac{1}{5}=\frac{5}{5}=1 \\
& \frac{5}{3} \cdot \frac{3}{5}=\frac{15}{15}=1
\end{align*}
$$

1. I and O
2. 1
3.1
3. Multiplicative Inverse $=$ Reciprocal
4. $\underline{O} \rightarrow \frac{1}{0}=$ error = undefined , you can never
$6.10 \rightarrow \frac{1}{10} \quad \frac{C_{\text {heck }}}{10 \cdot \frac{1}{10}}=\frac{10}{10}=1$

$$
\text { 7. } \frac{1}{9} \rightarrow \frac{9}{1} \quad \frac{1}{9} \cdot \frac{9}{1}=\frac{9}{9}=1
$$

