Algebra 2-2: Special Numbers in Multiplication

Warm-Up

1. Find the area of the shaded region.

- 2. Each small rectangle has length y and width x.
 - a. Express the area of the large rectangle as length times width.

3y.5x

b. Simplify your answer to part a.

C+, _	5	9	4
7(X [
<u>አ</u> 火_			
/			
(X_			
\			

<u>Property</u>	Definition	Example
Multiplicative Identity Property	ang # times = itself	7-1=7 5-1=5
Multiplication Property of O	any#times 0 = 0	8.0=0 5.0=0
Reciprocal of a Fraction Property	# 1 ip top + bottom # 3 is 1 is	5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3

Example Problems

Give the Reciprocal of each number

1.
$$\frac{3}{4}$$
 $\frac{4}{8}$

4.1
$$\frac{3}{5}$$

Are the numbers below reciprocals? Show why or why not.

12 = 8

9.
$$\frac{-1}{3}$$
 & 3 $\frac{-1}{3}$ $\frac{-3}{3}$ = $\frac{-3}{3}$

Giveme a set of reciprocals.

$$\frac{5}{3} \cdot \frac{3}{5} = \frac{15}{15} = 1$$

4. Multiplicative Inverse = Reciprocal

6.10
$$\Rightarrow \frac{1}{10}$$
 Check $\frac{10 \cdot 1}{10} = \frac{10}{10} = 1$

7. $\frac{1}{9} \Rightarrow \frac{9}{1} = \frac{1}{9} = \frac{9}{9} = 1$