4.6 Related Rates Day 2

Ex 1) A car is headed east from an intersection at $50 \mathrm{ft} / \mathrm{sec}$. A radio tower is 80 ft south of the intersection. How fast is the distance between the car and the radio station changing at $\mathrm{t}=3$ seconds?

$$
\begin{aligned}
& \frac{d z}{d t}=? \quad \frac{d y}{d t}=0 \\
& t=3
\end{aligned}
$$

$x^{2}+y^{2}=z^{2}$

$$
2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}=2 z \cdot \frac{d z}{d t}
$$

$2 \cdot 150 \cdot 50+284 \cdot 0=2 \cdot 170 \cdot \frac{d z}{d t}$
$15,000=340 d z \quad$

$$
\begin{gathered}
80^{2}+150^{2}=z^{2} \\
170=z
\end{gathered}
$$

$$
\begin{aligned}
& \frac{15000}{340}=\frac{d z}{d t} \\
& 44.11 \mathrm{fy} / \mathrm{sec}=\frac{d z}{d t}
\end{aligned}
$$

Ex 2) A balloon rises $1 \mathrm{ft} / \mathrm{sec}$. When a bike is traveling at $17 \mathrm{ft} / \mathrm{sec}$ is directly below the balloon, the balloon's height is 65 feet. How fast is the angle of elevation changing at $t=3$ seconds?

$$
\begin{gathered}
\frac{d y}{d t}=1 \mathrm{ft} / \sec \\
t=3 \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d \theta}{d t}=? \\
& \frac{d x}{d t}=17 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

$$
x=51
$$

$$
x=3 \cdot 17=51
$$

$\tan \theta=68 / 51$
$\sec ^{2} \theta \cdot \frac{d \theta}{d t}=\frac{x \cdot \frac{d y}{d t}-y \cdot \frac{d x}{d t}}{x^{2}}$

$$
\begin{gathered}
y=65+3=68 \\
x \ln A-681
\end{gathered}
$$

$$
\sec ^{2}(53.13) \cdot \frac{d \theta}{d t}=\frac{(51 \cdot 1-68 \cdot 17)}{\left(51^{2}\right)}
$$

$$
\theta=53.13 \quad \begin{aligned}
\frac{d \theta}{d t} & =\frac{-.425}{\sec ^{2}(53.13)} \\
& =-.425 \times \cos ^{2}(53.13) \\
& =-.153 \mathrm{ra}_{2} \mathrm{sec}
\end{aligned}
$$

Ex 3) The length of a rectangle increases at $2 \mathrm{in} / \mathrm{min}$ and the width decreases at $2 \mathrm{in} / \mathrm{min}$. What happens to the area?

$$
\frac{d w}{d t}=-2
$$

*. Area always increases

- B' Area always decreases
©. Area is always constant

(D.) Area increases when $w>1$
E. Area increases when $1>w$

$$
\frac{d A}{d t}=t \quad \frac{d A}{d t}=l \cdot-2+\omega \cdot 2
$$

Ex 4) Water runs into a cylindrical tank at $9 \mathrm{ft} 3 / \mathrm{min}$. How fast is the water level rising when $h=6 \mathrm{ft}$ and $\mathrm{r}=5 \mathrm{ft}$?

$\frac{d r}{d t}=0$

$$
\begin{aligned}
\frac{d v}{d t} & =9 \mathrm{ft}^{3} / \mathrm{min} \quad \frac{d h}{d t}=? \\
V & =\pi r^{u} r^{2} h \\
\frac{d v}{d t} & =h \cdot 2 \pi r \cdot \frac{d r}{d t}+\pi r^{2} \cdot \frac{d h}{d t} \\
9 & =6 \cdot 2 \pi \cdot 5 \cdot 0+\pi(5)^{2} \cdot \frac{d h}{d t} \\
9 & =25 \pi \cdot \frac{d h}{d t} \\
\frac{d h}{d t} & =\frac{9}{25 \pi}=2 \cdot 114 \mathrm{f} / \mathrm{min}
\end{aligned}
$$

Ex 5) Wheat is pouring from a chute at $10 \mathrm{ft} 3 / \mathrm{min}$ and forms a conical pile. The radius is half the height. How fast is the height rising when the pile is 8 feet high?

$$
\begin{aligned}
& \frac{d h}{d t}=? \quad \frac{d v}{d t}=+10 f t^{3} / \mathrm{min} \\
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} \cdot h \\
& V=\frac{\pi h^{3}}{12} \\
& \frac{d v}{d t}=\frac{\pi}{12} \cdot 3 h^{2} \cdot \frac{d h}{d t} \\
& 10=\frac{\pi}{4}(8)^{2} \cdot \frac{d h}{d t} \\
& 10=16 \pi \cdot \frac{d h}{d t}
\end{aligned}
$$

$$
r=\frac{1}{2} h
$$

$$
h=8 \mathrm{ft}
$$

