2.1 - Rates of Change and Limits

Avg. speed $=\frac{\text { Distance traveled }}{\text { time elapsed }}$

$$
S=\text { position }
$$

Ex 1) A ball is thrown. Its height is modeled by $h(t)=40 t-16 t^{2}$
Find the avgerage speed between $t=0$ and $t=1$

$$
\begin{aligned}
& \text { AugSpeed }=\frac{\Delta S}{\Delta T}=\frac{h(1)-h(0)}{1-0}=\frac{24-0}{1} \\
& h(1)=40(1)-16(1)^{2}=40-16=24 \\
& h(0)=40(0)-16(0)^{2}=0
\end{aligned}
$$

Instantaneous Speed $=$ Speed at a given point (derivative)

Ex 2) Find the instantaneous speed at $t=1$ of $h(t)=40 t-16 t^{2}$

$$
\begin{aligned}
& \frac{\Delta S}{\Delta t}=\frac{h(1+x)-h(1)}{1+x-1} \\
& =\frac{40(1+x)-16(1+x)^{2}-\left(40(1)-16(1)^{2}\right)}{x} \\
& =\frac{46+40 x-16-16 x^{2}-32 x-40+16}{x} \\
& =\frac{8 x-16 x^{2}}{x}=\frac{x(8-16 x)}{x}=8-16 x \\
& \lim _{x \rightarrow 0} 8-16 x=8 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Limits

$\lim f(x)=\mathrm{L} \quad$ read "the limit of $f(x)$ as x approaches c is $\mathrm{L} "$ $x \rightarrow C$

The values of $f(x)$ approach or equal the value of L as the values of x approach (but are not necessarily equal to) c) .
So you'pereally asking yourself...
What does y get close to as x gets close to some number c ?

3 methods to evaluate limits

1. Graphically
2. Numerically (using the table)
3. Algebraically (no calculators)

$$
\lim _{x \rightarrow 1} f(x)=
$$

$$
f(1)=2
$$

The existence of a limit as $\boldsymbol{x} \rightarrow \mathrm{c}$ never depends on whether $f(x)$ is defined at c.

You can also find the limit by Substitution
If $f(x)$ is a polynomial function, then

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

If $f(x)$ is a rational function, then
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f(c)}{g(c)}$

$$
\text { Ex 8) } \begin{aligned}
\lim _{x \rightarrow 4} 5 x^{2}-2 x+3 & =5(4)^{2}-2(4)+3 \\
& =80-8+3= \\
\text { Ex 9) } \lim _{x \rightarrow-1} \frac{x-2}{x^{2}+4 x-3} & =\frac{-1-2}{(-1)^{2}+4(-1)-3} \\
& =\frac{-3}{4}=\frac{1}{2}
\end{aligned}
$$

