2.1 Rates of Change and Limits Day 2

Let us take a look at what happens to this function when using substitution to find the limit.

So, let us try finding the limit another way using factoring.

$$
\begin{aligned}
& \text { Ex 1) } \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x}=\lim _{x \rightarrow} \\
& \text { Ex 2) } \lim _{x \rightarrow 1} \frac{t^{3}-t}{t-3}=\frac{1^{3}-1}{1-3}=\frac{0}{-2}=0
\end{aligned}
$$

Ex 3)

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(h-5)^{2}-25}{h}=\lim _{h \rightarrow 0} \frac{h^{2}-10 h+25-25}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}-10 h}{h}=\lim _{h \rightarrow 0} \frac{h(h-10)}{h}=\lim _{h \rightarrow 0} h-10 \\
& =0-10 \\
& =-10
\end{aligned}
$$

One-sided limits

Right hand limits
$\lim f(x)$
$x \rightarrow c^{+}$
limit as x approaches c from the right

Left hand limits
$\lim f(x)$ $\mathrm{X} \rightarrow \mathrm{C}-$
limit as x approaches c from the left

* A function $f(x)$ has a limit if and only if the left and right hand limits are equal.

$$
\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c} f(x)=L
$$

Ex 4) \# 38 p. 66

True or False?
a) $\lim f(x)=1$ True
d) $\lim f(x)=2$ True
g) $\lim f(x)=\operatorname{Tru} f(x)$ $x \rightarrow-1^{+}$ $x \rightarrow 1^{-}$

$$
x \rightarrow 0^{+} \quad x \rightarrow 0^{-}
$$

b) $\lim _{x \rightarrow 2} f(x)=$ DNE False
e) $\lim _{x \rightarrow 1^{+}} f(x)=1$ True
h) $\lim f(x)$ exists at
c) $\lim _{x \rightarrow 2} f(x)=2 \mathrm{Fa} / \mathrm{se}$
f) $\lim _{x \rightarrow 1} f(x)=$ ONE $/ r \cup l$
i) $\lim _{x \rightarrow c} f(x) \quad$ exists at True ${ }^{(1,3)}$

Sandwich / Squeeze Theorem

$$
\text { If } g(x) \leqslant f(x) \leqslant h(x)
$$

for values of c in an open interval and

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L
$$

THEN

$$
\lim _{x \rightarrow c} f(x)=L
$$

Ex 5) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$

$$
\begin{aligned}
-1 & \leq \sin x \leq 1 \\
x-1 & \left.\leqslant \sin \frac{1}{x} \leq 1\right] \\
-1 x & \leqslant x \sin \frac{1}{x} \leq 1 x \\
\lim _{x \rightarrow 0}-1 x & \leqslant \lim _{x \rightarrow 0} x \sin \frac{1}{x} \leq \lim _{x \rightarrow 0} x \\
0 & \leqslant 0 \leqslant 0
\end{aligned}
$$

