2.2 Limits Involving Infinity

Day 1

Horizontal Asymptote Vertical Asymptote
The line $y=$ aisaH.A.
of the gravid of a
function $y=f(x)$
if either
$\lim _{x \rightarrow \infty} f(x)=a$ or
$\lim _{x \rightarrow-\infty} f(x)=a$.
The line $x=a$ is a
V.A. of the graph of a function $y=f(x)$
if either /jim $f(x)= \pm \infty$

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty .
$$

or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$.

The graph of $f(x)$ is below

$$
\text { Ex 1) } \begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=1 \\
& \lim _{x \rightarrow-\infty} f(x)=1 \\
& \lim _{x \rightarrow-1^{-}} f(x)=\infty \text { or DNE } \\
& \lim _{x \rightarrow-1^{+}} f(x)=-\infty \text { or DNE } \\
& \lim _{x \rightarrow-1^{-}} f(x)=\text { DUE } \\
& \lim _{x \rightarrow 3^{-}} f(x)=\infty \text { or DNE } \\
& \lim _{x \rightarrow 3^{+}} f(x)=\infty \text { oN DNE }
\end{aligned}
$$

Vertical Asymptotes How are they found? Zeros of denominator But not the factors that cancel out (holes)

Rational Function is in the form: $\frac{a x^{n}+b x^{n-1}+c x^{n-2}}{a x^{n} b x^{n-1} c x^{n-2}}$

Ex 2) Find the vertical asymptotes. $\frac{x+2}{x^{2}-5 x+4}=\frac{x+2}{(x-\psi)(x-1)}$

$$
x=4, x=1
$$

