Section 3.4 Exercises

1. (a) $V(s)=s^{3}$
(b) $\frac{d v}{d s}=3 s^{2}$
(c) $V^{\prime}(1)=3(1)^{2}=3$

$$
V^{\prime}(5)=3(5)^{2}=75
$$

3. (a) $A(s)=\frac{\sqrt{3}}{4} s^{2}$
(b) $\frac{d A}{d s}=\frac{\sqrt{3}}{2} s$
(c) $A^{\prime}(2)=\frac{\sqrt{3}}{2}(2)=\sqrt{3}$

$$
A^{\prime}(10)=\frac{\sqrt{3}}{2}(10)=5 \sqrt{3}
$$

(d) $\frac{\mathrm{in}^{2}}{\mathrm{in}}$.
5. (a) $s(\mathrm{ft})$

(b) $s^{\prime}(1)=18, s^{\prime}(2.5)=0, s^{\prime}(3.5)=-12$
9. (a) The particle moves forward when $v>0$, for $0 \leq t<1$ and for $5<t<7$.
The particle moves backward when $v<0$, for $1<t<5$. The particle speeds up when v is negative and decreasing, for $1<t<2$, and when v is positive and increasing, for $5<t<6$.
The particle slows down when v is positive and decreasing, for $0 \leq t<1$ and for $6<t<7$, and when v is negative and increasing, for $3<t<5$.
(b) Note that the acceleration $a=\frac{d v}{d t}$ is undefined at $t=2$, $t=3$, and $t=6$.
The acceleration is positive when v is increasing, for $3<t<6$.
The acceleration is negative when v is decreasing, for $0 \leq t<2$ and for $6<t<7$.
The acceleration is zero when v is constant, for $2<t<3$ and for $7<t \leq 9$.
(c) The particle moves at its greatest speed when $|v|$ is maximized. at $t=0$ and for $2<t<3$.

9. Continued

(d) The particle stands still for more than an instant when v stays at zero, for $7<t \leq 9$.
11. (a) The body reverses direction when v changes sign, at $t=2$ and at $t=7$.
(b) The body is moving at a constant speed, $|v|=3 \mathrm{~m} / \mathrm{sec}$, between $t=3$ and $t=6$.
(c) The speed graph is obtained by reflecting the negative portion of the velocity graph, $2<t<7$, about the x-axis. $\operatorname{Speed}(\mathrm{m} / \mathrm{sec})$

(d) For $0 \leq t<1: a=\frac{3-0}{1-0}=3 \mathrm{~m} / \mathrm{sec}^{2}$

For 1<t<3: $a=\frac{-3-3}{3-1}=-3 \mathrm{~m} / \mathrm{sec}^{2}$
For $3<t<6$: $a=\frac{-3-(-3)}{6-3}=0 \mathrm{~m} / \mathrm{sec}^{2}$
For $6<t<8: a=\frac{3-(-3)}{8-6}=3 \mathrm{~m} / \mathrm{sec}^{2}$
For $8<t \leq 10: a=\frac{0-3}{10-8}=-1.5 \mathrm{~m} / \mathrm{sec}^{2}$
Acceleration ($\mathrm{m} / \mathrm{sec}^{2}$)
13. (a) Velocity: $v(t)=\frac{d s}{d t}=\frac{d}{d t}\left(24 t-0.8 t^{2}\right)=24-1.6 t \mathrm{~m} / \mathrm{sec}$ Acceleration: $a(t)=\frac{d v}{d t}=\frac{d}{d t}(24-1.6 t)=-1.6 \mathrm{~m} / \mathrm{sec}^{2}$
(b) The rock reaches its highest point when $v(t)=24-1.6 t=0$, at $t=15$. It took 15 seconds.
(c) The maximum height was $s(15)=180$ meters.
(d) $s(t)=\frac{1}{2}(180)$

$$
\begin{aligned}
24 t-0.8 t^{2} & =90 \\
0 & =0.8 t^{2}-24 t+90 \\
t & =\frac{24 \pm \sqrt{(-24)^{2}-4(0.8)(90)}}{2(0.8)} \\
& \approx 4.393,25.607
\end{aligned}
$$

It took about 4.393 seconds to reach half its maximum height.
(e)

$$
\begin{aligned}
s(t) & =0 \\
24 t-0.8 t^{2} & =0 \\
0.8 t(30-t) & =0 \\
t & =0 \text { or } t=30
\end{aligned}
$$

The rock was aloft from $t=0$ to $t=30$, so it was aloft for 30 seconds.
15. The rock reaches its maximum height when the velocity $s^{\prime}(t)=24-9.8 t=0$, at $t \approx 2.449$. Its maximum height is about $s(2.449) \approx 29.388$ meters.
19. (a) Displacement: $=s(5)-s(0)=12-2=10 \mathrm{~m}$
(b) Average velocity $=\frac{10 \mathrm{~m}}{5 \mathrm{sec}}=2 \mathrm{~m} / \mathrm{sec}$
(c) Velocity $=s^{\prime}(t)=2 t-3$

At $t=4$, velocity $=s^{\prime}(4)=2(4)-3=5 \mathrm{~m} / \mathrm{sec}$
(d) Acceleration $=s^{\prime \prime}(t)=2 \mathrm{~m} / \mathrm{sec}^{2}$
(e) The particle changes direction when

$$
s^{\prime}(t)=2 t-3=0, \text { so } t=\frac{3}{2} \mathrm{sec} .
$$

(f) Since the acceleration is always positive, the position s is at a minimum when the particle changes direction, at $t=\frac{3}{2} \mathrm{sec}$. Its position at this time is $s\left(\frac{3}{2}\right)=-\frac{1}{4} \mathrm{~m}$.
21. (a) $v(t)=\frac{d s}{d t}=\frac{d}{d t}(t-2)^{2}(t-4)$

$$
=(t-2)(3 t-10)
$$

(b) $a(t)=\frac{d v}{d t}=\frac{d}{d t}(t-2)(3 t-10)$

$$
a(t)=6 t-16
$$

(c) $v(t)=(t-2)(3 t-10)=0$

$$
t=2, \frac{10}{3}
$$

(d) The particle starts at the point $s=-16$ when $t=0$ and move right until it stops at $s=0$ when $t=2$, then it moves left to the point $s=-1.185$ when $t=\frac{10}{3}$ where it stops again, and finally continues right from there on.
23. $v(t)=s^{\prime}(t)=3 t^{2}-12 t+9$
$a(t)=v^{\prime}(t)=6 t-12$
Find when velocity is zero.

$$
\begin{aligned}
& 3 t^{2}-12 t+9=0 \\
& 3\left(t^{2}-4 t+3\right)=0 \\
& 3(t-1)(t-3)=0 \\
& t=1 \text { or } t=3
\end{aligned}
$$

$$
\text { At } t=1 \text {, the acceleration is } a(1)=-6 \mathrm{~m} / \mathrm{sec}^{2}
$$

$$
\text { At } t=3 \text {, the acceleration is } a(3)=6 \mathrm{~m} / \mathrm{sec}^{2}
$$

Section 3.5 Exercises

1. $\frac{d}{d x}(1+x-\cos x)=0+1-(-\sin x)=1+\sin x$
2. $\frac{d}{d x}\left(\frac{1}{x}+5 \sin x\right)=-\frac{1}{x^{2}}+5 \cos x$
3. $\frac{d}{d x}\left(4-x^{2} \sin x\right)=\frac{d}{d x}(4)-\left[x^{2} \frac{d}{d x}(\sin x)+(\sin x) \frac{d}{d x}\left(x^{2}\right)\right]$

$$
=0-\left[x^{2} \cos x+(\sin x)(2 x)\right]
$$

$$
=-x^{2} \cos x-2 x \sin x
$$

7. $\frac{d}{d x}\left(\frac{4}{\cos x}\right)=\frac{d}{d x}(4 \sec x)=4 \sec x \tan x$
