3.3 Rules for Differentiation Day 2

Power Rule

$$
\begin{aligned}
\text { Ex 1) } y & =x^{4}+3 x^{3}-2 x^{-2}+4 \sqrt{x} \\
y^{\prime} & =4 x^{3}+9 x^{2}+4 x^{-3}+2 x^{-1 / 2} \\
y^{\prime} & =4 x^{3}+9 x^{2}+\frac{4}{x^{3}}+\frac{2}{\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Product Rule } \frac{d}{d x} f(x) g(x)= \\
& \frac{d}{d x}(u v)=u v^{\prime}+v u^{\prime} \int_{c} f(x) \cdot g(x)+g(x) \cdot f^{\prime}(x) \\
& \text { Ex 2) } \frac{d}{d x}\left(x^{u}-1\right)\left(x^{2}-2\right) \\
& \frac{c}{d x} u v=u \cdot \frac{d v}{d x}+v \cdot \frac{d u}{d x} \\
& =u v^{\prime}+v u^{\prime} \\
& =(x-1)(2 x)+\left(x^{2}-2\right) 1 \\
& =2 x^{2}-2 x+x^{2}-2 \\
& d / d x=3 x^{2}-2 x-2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 3) } \begin{aligned}
\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}\right. \\
=2 x-4 \\
x-4
\end{aligned} \\
& =\frac{V u^{\prime}-u v^{\prime}}{V^{2}}=\frac{(x-4)(2 x+2)-(x+2 x-1)(1)}{(x-4)^{2}} \\
& =\frac{2 x-8 x+2 x-8-x^{2}-2 x+1}{(x-4)^{2}} \\
& = \\
& \frac{x^{2}-8 x-7}{(x-4)^{2}}
\end{aligned}
$$

Ex 4) $f(x)=x^{4}-x^{3}+x^{2}-2 x+6=5$ $f(1)=1^{4}-1^{3}+1^{2}-2(1)+6=1$
Find equations for the tangent and normal lines at $x=1$.

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-3 x^{2}+2 x-2 \\
& f^{\prime}(1)=4(1)^{3}-3(1)^{2}+2(1)-2=-1=m \\
& \text { Tangent } m=1(1,5) \quad \text { Normal } m=-1 \\
& \begin{array}{l}
(1,-y)=m\left(x-x_{1}\right) \\
(y-5=1(x-1)
\end{array} \quad y-5=-1(x-1)
\end{aligned}
$$

Ex 5) $f(x)=x^{3}+3 x^{2}-3 x+6$
Where is the tangent line horizontal?
looking
for
cowidinate

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}+6 x-3 \\
0 & =3 x^{2}+6 x-3 \\
0 & =3\left(x^{2}+2 x-1\right) \frac{\sqrt{4 \sqrt{2}}}{2} \\
x & =\frac{-2 \pm \sqrt{4-4(1)(-1)}}{2(1)}=\frac{-2 \pm \sqrt{8}}{2} \\
& =-1
\end{aligned}
$$

$$
=\frac{-\underline{-1} \pm \frac{1}{2} \sqrt{2}}{\underline{2}}
$$

$$
x=-1 \pm \sqrt{2}
$$

$$
\begin{aligned}
& \text { Ex 6) Suppose } u(1)=2, u^{\prime}(1)=3, v(1)=-2, v^{\prime}(1)=4 \\
& \begin{aligned}
\frac{d}{d x}(u v) & =a v^{\prime}+v \cdot u^{\prime} \quad \begin{aligned}
& d \\
&=2 \cdot 4+-2 \cdot 3
\end{aligned} \quad 2 u-4 v+3 u v
\end{aligned} \\
& \begin{array}{l}
=8-6 \quad=2 \cdot \frac{d u}{d x} u-4 \cdot \frac{d v}{d x}+3 \cdot \frac{d}{d x} u \cdot v \\
=2
\end{array} \\
& =2 \cdot 3-4 \cdot 4+3(2 \cdot 4+-2 \cdot 3) \\
& =6-16+3(2) \\
& \frac{d}{d x} \frac{u}{v}=\frac{V \cdot u^{\prime}-u w^{\prime}}{v^{2}}=\frac{-2(3)-2 \cdot 4}{(-2)^{2}} \\
& =\frac{-6-8}{4}=\frac{14}{4}=\frac{-7}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 7) } y=x^{4}-x^{3}+x^{2}-2 x+6 \\
& y^{\prime}=4 x^{3}-3 x^{2}+2 x-2 \\
& y^{\prime \prime}=12 x^{2}-6 x+2 \\
& y^{\prime \prime \prime}=24 x-6 \\
& y^{\prime \prime \prime \prime}=24 \\
& y^{\prime \prime \prime \prime}=0
\end{aligned}
$$

39

$$
\begin{aligned}
& y=2 x^{3}-3 x^{2}-12 x+20 \\
& y^{\prime}=0 \\
&=6 x^{2}-6 x-12 \\
& 0=6\left(x^{2}-x-2\right) \\
& 0=6(x-2)(x+1) \\
& x-2=0 \quad x+1=0 \\
& x=2 \quad x=-1
\end{aligned}
$$

35

$$
\begin{aligned}
& y=x^{-1}+x^{2} \\
& y^{\prime}=-1 x^{-2}+2 x=\frac{-1}{x^{2}}+2 x \\
& y^{\prime \prime}=2 x^{-3}+2=\frac{2}{x^{3}}+2 \\
& y^{\prime \prime \prime}=-6 x^{-4}=\frac{-6}{x^{4}} \\
& y^{\prime \prime \prime \prime}=24 x^{-5}=\frac{24}{x^{5}}
\end{aligned}
$$

