3.5 Derivatives of Trigonometric Functions Day 2	
$f(x)$	$f^{\prime}(x)$
$y=\sin x$	$y^{\prime}=\cos x$
$y=\cos x$	$y^{\prime}=-\sin x$
$y=\tan x$	$y^{\prime}=\sec ^{2} x$
$y=\sec x$	$y^{\prime}=\sec x \tan x$
$y=\csc x$	$y^{\prime}=-\csc x \cot x$
$y=\cot x$	$y^{\prime}=-\csc ^{2} x$

Ex 3) Which of the following is an equation of the normal line to $y=\sin x+\cos x$ at $x=\pi$?

$$
\begin{aligned}
y & =\sin x+\cos x \text { at } x=\pi! \\
& =\sin (\pi)+\cos (\pi)=0-1=-1
\end{aligned}
$$

A. $y=-x+\pi-1$

$$
\begin{aligned}
& y^{\prime}=\cos x-\sin x \\
& =\cos \pi-\sin \pi \\
& =-1-0 \\
& =-1=m \text { tamyent } \\
& \begin{array}{ll}
y+11=1(x-\pi) & \begin{array}{l}
1=m \text { Normal } \\
y=x-\pi-1
\end{array} \\
(\pi, 1)
\end{array}
\end{aligned}
$$

B. $y=x-\pi-1$
C. $y=x-\pi+1$
D. $y=x+\pi+1$
E. $y=x+\pi-1$

Ex 4) Find $y^{\prime \prime}$ if $y=u \cdot{ }^{-} \dot{\sin } x$
A. $-x \sin x$
B. $x \cos x+\sin x$

$$
\begin{aligned}
& y^{\prime}=x^{u} \cdot \cos x+\sin x \cdot 1 \\
& y^{\prime \prime}=\underbrace{x(-\sin x)+1 \cos x \cdot 1++\cos x} \\
& =-x \sin x+2 \cos x
\end{aligned}
$$

C. $-x \sin x+2 \cos x$
D. $x \sin x$
E. $-\sin x+\cos x$

Ex 5) A body is moving in simple harmonic motion with position $s=3+\sin t$. At which of the following times is the velocity zero?

$$
S^{\prime}=v=\cos t=0
$$

A. $\dagger=0$
B. $t=\pi / 4$
C. $t=\pi / 2$
D. $t=\pi$
E. none of these

