### 3.8 Derivatives of Inverse Trigonometric Functions


$\sin ^{-1} x=\arcsin x$ $\cos ^{-1} x=\arccos x$ $\tan ^{-1} x=\arctan x$

$$
\begin{aligned}
& \text { switch } x+y \\
& \text { around } \\
& \text { solve for } y \\
& \text { reflection } \\
& \text { over } \\
& y=x
\end{aligned}
$$



$$
\begin{aligned}
& \begin{array}{|l|l}
\substack{\mathbf{E} \\
\mathbf{M}} \\
& \left.\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x} \right\rvert\,
\end{array} \\
& \begin{array}{l}
\mathbf{O} \\
\mathbf{R} \\
\mathbf{1} \\
\mathbf{Z}
\end{array} \mathbf{d}^{\mathrm{dx}} \cos ^{-1} \mathrm{x}=-\frac{1}{\sqrt{1-x^{2}}} \frac{d}{d x} \cos ^{-1} u=\frac{-1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x} \\
& \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \quad \frac{d}{d x} \tan ^{-1} u=\frac{1}{1+u^{2}} \cdot \frac{d u}{d x}
\end{aligned}
$$

$$
\left.\begin{aligned}
& \text { Ex 1) } \frac{d}{d x} \tan ^{-1 / u)}=\frac{1}{1-1-u^{2}} \cdot \frac{d a}{d x} \\
& \frac{d}{d x} \tan -1\left(x^{2}\right)= \\
& =\frac{1}{1+\left(x^{2}\right)^{2}} \cdot 2 x \\
& =\frac{2 x}{1+x^{4}}
\end{aligned} \right\rvert\, \begin{aligned}
& \frac{d}{d x} \tan -1 \sqrt{(3 x)}= \\
& =\frac{1}{1+(\sqrt{3 x})^{2}} \cdot \frac{1}{2}(3 x)^{-1 / 2} \cdot 3 \\
& \frac{3}{2(1+3 x) \sqrt{3 x}}=(3 x)^{1 / 2}
\end{aligned}
$$



$$
\begin{aligned}
& \left.\begin{array}{ll}
E x 5) \\
\frac{d}{d x}\left(x \cdot v^{v}-1 x+\sqrt{\left(1-x^{2}\right.}\right)
\end{array}\right)=\quad v u^{\prime}+u v^{\prime}, ~\left(1-x^{2}\right)^{1 / 2} \\
& =\cos ^{-1} x \cdot 1+x \cdot \frac{-1}{\sqrt{1-x^{2}}}+\frac{11}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot(-2 x x) \\
& =\cos ^{-1} x+\frac{-x}{\sqrt{1-x^{2}}}+\frac{-x}{\sqrt{1-x^{2}}} \\
& =\cos ^{-1} x-\frac{2 x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

