54. On what interval is the function $g(x)=e^{x^{3}-6 x^{2}+8}$ decreasing? $[0,4]$

$$
g^{\prime}(x)=e^{x^{3}-6 x^{2}+8}\left(3 x^{2}-12 x\right)
$$

(1) $g^{\prime}=0 \quad 3 x^{2}-12 x=0$

$$
3 x(x-4)=0
$$

(2) $\quad x=0 \quad x=4$

$$
x=0 \quad x=4
$$

(3) Endpts
asp
56. All of the following satisfy the conditions of the Mean Value Theorem on the interval [-1,1] except
A) $\sin x \longrightarrow$
B) $\sin ^{-1} x \quad f^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$ and. $x= \pm 1$
C) $x^{5 / 3} \sqrt[3]{x^{5}} f^{\prime}=\frac{5}{3} x^{2 / 3}=\frac{5 \sqrt[3]{x^{2}}}{3}$
E) $\frac{\sqrt[5]{x^{3}}}{x-2} f^{\prime}=\frac{3}{5} x^{-4 / 5}=\frac{3}{5 \sqrt[5]{x^{2}}} \quad x=0$ ind de x
53. If $f(x)=\cos x$, then the Mean Value Theorem guarantees that somewhere between 0 and $\Pi / 3, f^{\prime}(x)=$
A) $\frac{-3}{2 \pi}$

$$
f^{\prime}(x)=-\sin x
$$

B) $-\frac{\sqrt{3}}{2}$
C) $\frac{-1}{2}$
D) 0
E) $\frac{1}{2}$

Slope between

$$
\frac{f(\pi / 3)-f(0)}{\frac{\pi}{3}-0}=\frac{\frac{1}{2}-1}{\frac{\pi}{3}}
$$

$$
=\frac{1}{2}
$$

$$
f(0)=\cos 0=1
$$

$$
\left.=-\frac{1}{2} \cdot \frac{3}{\pi}=\frac{-3}{2 \pi}\right)
$$

Concavity Test
If $f^{\prime \prime}(x)>0$ for all x on (a, b), then $f(x)$ is concave up on $(a, b) \circlearrowright$ "Concave up like a cup" If $f^{\prime \prime}(x)<0$ for all x on (a, b), then $f(x)$ is concave down on (a, b) "Concav edown like adown"

Inflection Points
If $f^{\prime \prime}(x)$ switches signs at $x=c$, then $x=c$ is an inflection point.
so we will look at $f^{\prime \prime}=0$ and $f^{\prime \prime}=$ and
 to find inflection points.

Ex 1) Use $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to determine increasing/decreasing, max/min, concavity, and inflection points. $f(x)=x^{3}-12 x-5$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 \\
& \text { (1) } f^{\prime}=0 \quad 0=3 x^{2}-12 \\
& \\
& 12=3 x^{2} \\
& \text { (1) } f^{\prime} \text {-and } \\
& \text { None } \\
& \text { Nan } \\
& x= \pm 2
\end{aligned}
$$

$$
\begin{array}{r}
\text { Local Max: } x=-2 \\
y=11 \\
\hline \text { Local Min: } x=2 \\
n=-21
\end{array}
$$ (vine)

$$
\text { incr: }(-\infty,-2][2, \infty)
$$

deer: $[-2,2]$

Exp) Continued.... $f(x)=x^{3}-12 x-5$

$$
\begin{aligned}
& f^{\prime}=3 x^{2}-12 \\
& f^{\prime \prime}=6 x
\end{aligned}
$$

(1)

$$
f^{\prime \prime}=0 \quad 6 x=0
$$

(2) $f^{\prime \prime}=$ and.
never

$f^{\prime \prime}>0$, Concave Up $f^{\prime \prime}<0$, Concave down
$x=0$, inflection point

December 11, 2012

