Questions from 4-4...

$$
V u^{\prime}+u v^{\prime}
$$

55. What is the maximum area of a right triangle with hypotenuse 10?

$$
\begin{aligned}
& A(x)=\frac{1}{2} b \cdot h \\
& A(x)=\frac{1}{2} \cdot x \cdot \sqrt{100-x^{2}}
\end{aligned}
$$

$$
y^{2}+x^{2}=100
$$

$$
A^{\prime}(x)=\sqrt{100-x^{2}} \cdot \frac{1}{2}+\frac{1}{2} x \cdot \frac{11}{2}(100-x)^{-1 / 2} \cdot=2 x
$$

$$
y^{2}=100-x^{2}
$$

$$
\frac{=\left(\sqrt{100-x^{2}}\right)^{2}}{\sqrt{100 x^{2}} 2}+\frac{-x^{2}}{2 \sqrt{100-x^{2}}}
$$

$$
y= \pm \sqrt{100-x^{2}}
$$

$$
\begin{aligned}
50-x^{2} & =0 \\
x^{2} & =50 \\
x & = \pm \sqrt{50}
\end{aligned}
$$

$$
=\frac{100-x^{2}-x^{2}}{2 \sqrt{100-x^{2}}}=\frac{100-2 x^{2}}{2 \sqrt{100-x^{2}}}
$$

$$
=\frac{50-x^{2}}{\sqrt{100-x^{2}}}
$$

$$
\begin{aligned}
A(\sqrt{50}) & =\frac{1}{2} \sqrt{50} \cdot \sqrt{100-(\sqrt{50})^{2}} \\
& =\frac{1}{2} \cdot \sqrt{50} \cdot \sqrt{50}=\frac{1}{2} \cdot 50=25 \text { units }
\end{aligned}
$$

56. A rectangle is inscribed between the parabolas $y=4 x^{2}$ and $y=30-x^{2}$, what is the maximum area of such a rectangle?

$$
\begin{aligned}
A(\sqrt{2}) & =60 \sqrt{2}-10 \sqrt{2} \\
& =60 \sqrt{2}-20 \sqrt{2} \\
& =40 \sqrt{2} \text { units }
\end{aligned}
$$

$$
\begin{aligned}
A(x) & =l \cdot w \\
A(x) & =2 x \cdot\left(30-x^{2}-4 x^{2}\right) \\
A(x) & =2 x\left(30-5 x^{2}\right) \\
A(x) & \left.=60 x-10 x^{3}\right) \\
A^{\prime}(x) & =60-30 x^{2} \\
0 & =60-30 x^{2} \\
30 x^{2} & =60 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

\#25
The 7 P. 224 Minimizing Aug Cost Avg Cost $=$ Marginal 1 Cost

$$
\frac{C(x)}{x}=\text { avg } \cdot \text { cost } \quad x
$$

