Questions from 4-4...

55. What is the maximum area of a right triangle with hypotenuse 10?

4.5 Linearization and Newton's Method
tangent line
Ex 1) Find the linearization of
$$f(x) = x^2 + 4x + 1$$
 at
 $x = 2$. Use the linearization to approximate $f(2.1)$.
() Tangent (ine: $X = 2$) $+ 4x + 1$
 $f'(x) = 2x + 4$
 $f'(x) = 2x + 4$
 $f'(x) = 2x + 4$
 $f'(x) = 2x + 4 = 8 = 10$ (2,13)
 $y - 13 = 8(x - 2)$
 $y - 13 = 8(x - 2)$
Approximate
Atual
 $f(2,1) = (2,1) + 4(2,1) + 1 = 13.81$

Ex 4)
$$y = x^{3}+2x^{2}+x-5$$

Assume $x = 1$ and $dx = 0.05$, find dy.
 $y' = \frac{dy}{dx} = 3x^{2}+4x+1$
 $\frac{dy}{dx} = 3(1)^{2}+4(1)+1$
 $\frac{dy}{dx} = 8(.5)$
 $\frac{dy}{dy} = 8(.5)$

Ex 5)
$$y = \frac{2x}{1+x^2}$$

Assume x = -2 and dx = 0.1, find dy.
 $\frac{dy}{dy} = \frac{(Hx^2) \cdot 2 - \partial x(\partial x)}{(1+x^2)^2 - \partial x^2}$
 $\frac{dy}{dx} = \frac{2+\partial x^2 - 4x^2}{(1+x^2)^2}$
 $\frac{dy}{dy} = \frac{2}{0} + \frac{2}{0} +$

Ex 6)
$$2y = x^2 - x^{n}y$$
 $V_n' + n y'$ $ay = 4 - 2y$
Assume $x = 2$ and $dx = -0.05$, find dy .
 $ay = 4$
 $ay = 4$
 $ay = 4$
 $ay = 2x - (y \cdot 1 + x \cdot dy)$
 $ady = 2x - y - x \cdot dy$
 $ady = 2x - y - x \cdot dy$
 $dy = 2x - y$
 $dy = 2(x) - 1$
 $-05 = \frac{3}{4}(-05)$ $dy = \frac{3}{80} = \frac{-0375}{-0375}$