Questions from 4-4...

55. What is the maximum area of a right triangle with hypotenuse 10?

56. A rectangle is inscribed between the parabolas $y=4 x^{2}$ and $y=30-x^{2}$, what is the maximum area of such a rectangle?

4.5 Linearization and Newton's Method tangentline
Ex 1) Find the linearization of $f(x)=x^{2}+4 x+1$ at $x=2$. Use the linearization to approximate $f(2.1)$.
(1) Tangent Line: $x=2$

$$
\begin{aligned}
& f^{\prime}(x)= 2 x+4 \\
&\left.f^{\prime}(2)=2 \cdot 2+4=8=m\right)(2,13) \\
& y-13=8(x-2)
\end{aligned}
$$

$$
\begin{gathered}
4+8+1 \\
13
\end{gathered}
$$

(2) $y(2.1)=8=8 x-3$

$$
\text { (2) } y(2.1)=8(2.1)-3=8 x-3
$$

Approximate
Actual

$$
f(2.1)=(2.1)^{2}+4(2.1)+1=13.81
$$

Ex 2) Find the linearization of $f(x)=\ln (x+1)$ at $x=0$. Use the linearization to approximate $f(0.1)$.
(1) Tangent line:

$$
\begin{aligned}
& \text { argent line: } \\
& f^{\prime}(x)=\frac{1}{x+1} \cdot 1 \quad(0,0)^{\ln (0+1)} \ln 1=0 \\
& f^{\prime}(0)=\frac{1}{0+1} \cdot 1=1=m \\
& y-0=1(x-0) \\
& y=x
\end{aligned}
$$

(2) Approximate: $y(-1)=(1)$

Ex 3) Find the linearization of $f(x)=e^{x}+\sin x$ at $x=0$. Use the linearization to approximate $f(0.1)$.
(1) Tangent: $f^{\prime}(x)=e^{x}+\cos x$

$$
\begin{array}{cc}
f^{\prime}(0)=e^{0}+\cos 0 \\
& =1+1=2 \\
y-1=2(x-0) & =m \\
y=2 x+1 & (0,1) \\
y(.1)=2(\cdot 1)+1 & e^{0}+\sin 0 \\
& =1.2 \\
1+0=1
\end{array}
$$

Ex 4) $y=x^{3}+2 x^{2}+x-5$
Assume $x=1$ and $d x=0.05$, find $d y$.

$$
\begin{gathered}
y^{\prime}=\frac{d y}{d x}=3 x^{2}+4 x+1 \\
\frac{d y}{.05}=3(1)^{2}+4(1)+1 \\
\frac{d y}{.05}=8 \\
d y=8(.05) \\
d y=.4
\end{gathered}
$$

Ex 5) $y=\frac{2 x^{u}}{1+x^{2}}$
Assume $x=-2$ and $d x=0.1$, find $d y$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(1+x^{2}\right) \cdot 2-2 x(2 x)}{\left(1+x^{2}\right)^{2}-2 x^{2}} \\
& \frac{d y}{d x}=\frac{2+2 x^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}} \\
& \frac{d y}{\cdot 1}=\frac{2+-2(-2)^{2}}{\left(1+(-2)^{2}\right)^{2}} \\
& (1) \frac{d y}{1}=\frac{-6}{25}(.1) \\
& \frac{d y}{1}=.024
\end{aligned}
$$

Ex 6) $2 y=x^{2}-x y$

$$
\begin{aligned}
& 2 \cdot \frac{d y}{d x}=2 x-\left(y \cdot 1+x \cdot \frac{d y}{d x}\right) \\
& \frac{2 d y}{d y}=2 x-y-\frac{x d y}{d x} \\
& \frac{2 d y}{d x}+\frac{x d y}{d x}=2 x-y \\
& \frac{d y}{d x}(2+x)=2 x-y \\
& \frac{d y}{d x}=\frac{2 x-y}{2+x} \\
& \frac{d y}{-.05}=\frac{2(2)-1}{2+2} \quad d y=\frac{3}{80}=-.0375 \\
& (-.05) \frac{d y}{-.05}=\frac{3}{4}(-.05)
\end{aligned}
$$

