

Ex 2) Find the area enclosed between the $f(x)=1-|x|$ and $f(x)=x^{2}-1$.

$$
\begin{aligned}
& \int_{-1}^{1}(1-|x|) d x+\left|\int_{-1}^{1}\left(x^{2}-1\right) \cdot d x\right| \\
& \frac{1}{2} \cdot 2 \cdot 1 \left.+\left|\left(\frac{x^{3}}{3}-x\right)\right|_{-1}^{1} \right\rvert\, \\
& 1+\left|\left(\frac{1}{3}-1\right)-\left(-\frac{1}{3}+1\right)\right| \\
& 1+\left|-\frac{2}{3}-\frac{2}{3}\right| \\
& 1+\left|-\frac{4}{3}\right| \\
& 1+4 / 3\left.=\frac{7}{3}\right) u^{2}
\end{aligned}
$$

Ex 4) Find the total area of the region between the curve and the x-axis if $f(x)=3 x^{2}-3,[-2,2]$.

$$
\begin{gathered}
2 \int_{1}^{2}\left(3 x^{2}-3\right) d x+\left|\int_{-1}^{1}\left(3 x^{2}-3\right) d x\right| \\
2\left(\left.\left(x^{3}-3 x\right)\right|_{1} ^{2}\right)+\left|\left(x^{2}-3 x\right)^{\prime}-1\right| \\
2((8-6)-(1-3))+|(1-3)-(-1+3)| \\
2(2+2)+|-2-2| \\
8+4 \\
12 u^{2}
\end{gathered}
$$

$$
3 x^{2}-3=0
$$

$$
3 x^{2}=3
$$

$$
x^{2}=1
$$

$$
x= \pm 1
$$

