6.1 Slope Fields and Euler's Method

Find the general solution to the exact differential equation.

$$
\begin{array}{|lll}
\text { Ex 1) } \frac{d y}{d x}=2 x \quad \int 2 x \cdot d x & y=x^{2}+C \\
\int x^{r}=\frac{x^{r+1}}{r+1}+C \quad \frac{2 x^{1+1}}{2}=x^{2} & \\
\text { Ex 2) } \frac{d y}{d x}=\sec (x) \tan (x)-e^{x} & y=\sec x-e^{x}+C \\
\int\left(\sec x \tan x-e^{x}\right) d x & \\
\text { Ex 3) } \frac{d y}{d x}=\frac{1}{x}-\frac{1}{x^{2}} & y=\ln x-\frac{-1}{x}+C \\
& =\ln x+\frac{1}{x}+C \\
x^{-12 n} & \int\left(\frac{1}{x}-x^{-2}\right) d x & \\
\frac{x^{-2+1}}{-1}=\frac{x^{-1}}{-1}=\frac{-1}{x}
\end{array}
$$

Find the general solution to the exact differential equation.
$E x$ 4) $\frac{d y}{d x}=2 x\left(\cos x^{2}\right)$

$$
y=\sin x^{2}+C
$$

$$
\int 2 x\left(\cos x^{2}\right)
$$

$$
\begin{aligned}
& y=\sin x \\
& y^{\prime}=\cos ^{2}(2 x)
\end{aligned}
$$

Ex 5) $\frac{d y}{d x}=\sec ^{2} x+2 x+5$

$$
y=\tan x+x^{2}+5 x+C
$$

Ex 6) $\frac{d y}{d x}=e^{x}-6 x^{2}$

$$
y=e^{x}-2 x^{3}+C
$$

$$
\int\left(e^{x}-6 x^{2}\right)
$$

Solve the initial value problem.

$$
\begin{aligned}
& \operatorname{Ex}^{\text {Ex }} 7 \text {) } \frac{d y}{d x}=2 \cos (x) \sqrt{\int} 2 \cos x \\
& y=2 \sin x+C \\
& 3=2 \sin 0+C \\
& y=3, x=0 \\
& 3=0+c \\
& y=2 \sin x+3 \\
& \text { Ex 8) } \frac{d y}{d x}=2 e^{x}-\cos x \\
& y=3, x=0 \\
& \int\left(2 e^{x}-\cos x\right) \\
& 2 \sqrt{ } e^{x}-\int \cos x \left\lvert\, \begin{array}{l}
1=c \\
y=2 e^{x}-\sin x+1
\end{array}\right.
\end{aligned}
$$

Solve the initial value problem.

$$
\begin{aligned}
& \text { Ex 9) } \\
& \frac{d y}{d x}=10 x^{9}+5 x^{4}-2 x+4 \quad y=x^{10}+x^{5}-x^{2}+4 x+C \\
& f(1)=6 \\
& \begin{array}{l}
x=1 \\
y=6
\end{array} \\
& \text { Ex 10) } \\
& \frac{d y}{d x}=\frac{1}{x^{2}}-\frac{2}{x^{3}} \\
& 6=1+1-1+4+c \\
& 6=5+c \\
& 1=c \quad y=x^{10}+x^{5}-x^{2}+4 x+1 \\
& y=-\frac{1}{x}+\frac{1}{x^{2}}+C \\
& \begin{array}{ll}
x= \\
y=4 & f(1)=4
\end{array} \\
& \int\left(x^{2}-2 x^{-3}\right) d x \\
& \frac{x^{-1}}{-1}-\frac{2 x^{-2}}{-2}=\frac{-1}{x}+\frac{1}{x^{2}}+c \\
& 4=\frac{-1}{1}+\frac{1}{1^{2}}+C \\
& 4=c
\end{aligned}
$$

