U - Substitution = Reverse Chain Rule b: 3 , Integration by Parts $=$ Reverse Product Rule
Product Rule $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\int u \frac{d v}{d x} \cdot d x=\int \frac{d}{d x}(u v) d x-\int v \cdot \frac{d u}{d x} \cdot d x$
$\int u d v=u v-\int v d u$

$$
\left.u v-\int v d u=\int u d v\right)
$$

$$
\begin{aligned}
& \int x \cos x d x \\
& d v=\cos x d x \\
& v=\sin x \\
& \int u d v=u v-\int v d u \\
& \int x \cos \operatorname{sic} x=x \cdot \sin x-\int \sin x d x \\
& =x \sin x++\cos x+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \begin{array}{l|l}
x \mathrm{e}^{x} \mathrm{dx} & \begin{array}{r}
u=x \\
d u=d x
\end{array} \\
\begin{array}{l}
d v=e^{x} d x \\
v=e^{x}
\end{array} \\
\int u d v=u v-\int v d u \\
\int x e^{x} d x=x \cdot e^{x}-\int e^{x} d x \\
=x e^{x}-e^{x}+c
\end{array} \\
& v_{n}^{\prime}+u^{\prime} v^{\prime}=\frac{C h e c k}{u e^{x}-e^{x}} \\
& y^{\prime}=e^{u x} \cdot 1+x \cdot e^{x}-e^{x} \\
& y^{\prime}=x e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \int 2 t \cos 3 t d t \begin{array}{c|c}
a=2 t & d v=\cos (3 t) d t \\
d u=2 d t & v=\frac{1}{3} \sin (3 t)
\end{array} \\
& \int u d v=u v-\int v d u \\
& \int \cos (3 t) d t \\
& u=3 t \\
& \int 2 t \cos (3 t)=2 t \cdot \frac{1}{3} \sin (3 t)-\int \frac{1}{3} \sin (3 t) \cdot 2 d t \\
& =\frac{2 t}{3} \sin (3 t)-\frac{2}{3} \int \sin (3 t) d t \\
& a=3 d t \\
& \frac{1}{3} d u=d t \\
& \frac{1}{3} \delta \cos u d u \\
& =\frac{2}{3} t \sin (3 t)-\frac{2}{3}-\frac{1}{3} \cos (3 t) \\
& \backslash_{u=3 t} \\
& \frac{1}{3} \sin (3 t) \\
& d u=3 d t \\
& \frac{1}{3} d u=d t \\
& \begin{array}{l}
\frac{1}{3} \int \sin u d u \\
-\frac{1}{3} \cdot \cos (3 t)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\int x \ln x d x \quad \begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x
\end{array} \right\rvert\, \begin{array}{l}
d v=x d x \\
v=\frac{x^{2}}{2}
\end{array} \\
& =u v-\int v d u \\
& =\ln x \cdot \frac{x^{2}}{2}-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x \\
& =\ln x \cdot \frac{x^{2}}{2}-\int \frac{x}{2} d x \\
& =\ln x \cdot \frac{x^{2}}{2}-\frac{1}{2} \cdot \frac{x^{2}}{2}+c \\
& =\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}+c \\
& \frac{6.3 \text { day I }}{1,3,5,7,9,11,15} \\
& \text { Extra Example } \\
& \int \ln x d x \\
& u=\ln x \quad d v=1 d x \\
& d u=\frac{1}{x} d x \quad v=x \\
& u v-\int v \cdot d u \\
& =x \ln x-\int x \cdot \frac{1}{x} d x \\
& =x \ln x-\int 1 d x \\
& =x \ln x-x+C
\end{aligned}
$$

