$$
\int u d v=u v-\int v d u \quad \text { 6.3Day2 }
$$

Solve the initial value problems

- Given x and y
- Integrate
- Plug in to solve for C

Generally -

$$
\frac{\text { Choosing" } u^{\prime \prime}}{L / P E T}
$$ - 4 to be Something that simplifies when you differentiate

- ad to be something manageable when you integrate

$$
\begin{aligned}
& \frac{d y}{d x}=2 x^{-x} \\
& x=0, y=3 \\
& \int 2 x e^{-x} d x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
d u=-1 d x \\
1 d x=d x
\end{array} \\
& =u \cdot v-\int v d u \\
& \text { - } \int e^{u} d u=-e^{u}=-e^{-x} \\
& =2 x\left(-e^{-x}\right)-\int-e^{-x} \cdot 2 d x \\
& =-2 x e^{-x}+2 e^{-x}+c
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=x \sec ^{2} x \\
& x=0, y=1 \\
& \int x \sec ^{2} x d x \\
& \begin{array}{l}
u=x \\
d u=d x
\end{array} \left\lvert\, \begin{aligned}
d v & =\sec ^{2} x d x \\
v & =t a n x
\end{aligned}\right. \\
& d u=d x \quad v=\tan x \\
& =u \cdot v-\delta v d u \\
& =x \tan x-\int \tan x d x \\
& =x \tan x-\int \frac{\sin x}{\cos x} d x \\
& =x \tan x+\ln |\cos x|+c \\
& 1=0+0+c \\
& u=\cos x \\
& d u=-\sin x d x \\
& -d u=\sin x d x \\
& -\int \frac{1}{u} d u \\
& 1=c \\
& -\ln |u|=-\ln |\cos x| \\
& y=x \tan x+\ln |\cos x|+1
\end{aligned}
$$

$$
\begin{aligned}
& \int e^{x} \sin x d x \\
& u=e^{x} \quad \mid d v=\sin x d x \\
& \begin{array}{l|l}
u=e^{x} \\
d u=e^{x} d x & v=-\cos x
\end{array} \\
& =u \cdot v-\int v d u \\
& =-e^{x} \cos x+\int \cos x \cdot e^{x} d x \\
& u=e^{x} \quad d v=\cos x d x \\
& d u=e^{x} d x \\
& v=\sin x \\
& \int e^{x} \sin x d x=-e^{x} \cos x+e^{x} \sin x-\int \sin x \cdot e^{x} d x \\
& \frac{2 \int e^{x} \sin x d x}{2}=\frac{-e^{x} \cos x+e^{x} \sin x}{2} \\
& \int e^{x} \sin x d x=\frac{-e^{x} \cos x+e^{x} \sin x}{2}+c
\end{aligned}
$$

