6.4 Exponential Growth and Decay

Ex 1) Solve the initial value problem.

$$
\begin{array}{l|l}
\frac{d y}{d x}=-\frac{x}{y} \\
y \cdot d y=-x d x \\
\int y d y=\int-x d x & \frac{3^{2}}{2}=\frac{-4^{2}}{2}+c \\
\left.\frac{y^{2}}{2}=\frac{-x^{2}}{2}+c \right\rvert\, & \begin{array}{l}
\frac{9}{2}=\frac{-16}{2}+c \\
\frac{23}{2}=c \\
\\
\\
\\
\\
\\
\\
\frac{y^{2}}{y^{2}}=\frac{-x^{2}}{2}+\frac{25}{2} \\
\sqrt{y^{2}+25}
\end{array}=\sqrt{25-x^{2}}
\end{array}
$$

Steps

1. Separate the variables
2. Integrate/Antider ivative
3. Solve for C.

4 . Solve for y.

Ex 2) Solve the initial value problem $\ln x=y$

$$
\begin{aligned}
& \frac{d y}{d x}=2 x y \\
& x=0, y=3 \\
& \frac{1}{y} d y=2 x d x \\
& \int \frac{1}{y} d y=\int 2 x d x \\
& \ln y=x^{2}+c \\
& \ln 3=0^{2}+c \\
& \ln 3=c \\
& \ln y=x^{2}+\ln 3 \\
& e^{x^{2}+\ln 3}=y \\
& \begin{array}{c}
\overrightarrow{O R} \ln y-\ln 3=x^{2} \\
\ln \frac{y}{3}=x^{2}
\end{array} \\
& e^{x^{2}}=\frac{y}{3} \\
& 3 e^{x^{2}}=y
\end{aligned}
$$

Ex) Solve the initial value problem.

$$
\begin{array}{c|c}
\frac{d y}{d x}=\cos ^{2} y & x=0, y=0 \\
\frac{1}{\cos ^{2} y} d y=d x & \tan 0=0+C \\
\sec ^{2} y d y=d x & 0=c \\
\int \sec ^{2} y d y=\int 1 d x & \tan y=x \\
\tan y=x+c &
\end{array}
$$

Ex 4) Solve the initial value problem $x^{2} \cdot x^{m}=x^{2+m}$

\[

\]

Ex 5) Solve the initial value problem

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{4 \sqrt{(y)} \ln x}{x} \quad x=e, y=1 \\
& \frac{1}{4 \sqrt{y}} d y=\frac{\ln x}{x} \cdot d x \\
& \frac{1}{4} \int y^{-1 / 2} \cdot d y=\int \frac{\ln x}{x} \cdot d x \quad \begin{array}{l}
\operatorname{let} u=\ln x \\
\frac{d u}{a x}=\frac{1}{x} \\
d u=\frac{1}{x}
\end{array} \quad \sqrt{2} \cdot d x \\
& \frac{1}{4} \cdot \int^{1 / 2} \cdot \frac{2}{1}=\int u \cdot d u \quad \frac{\ln ^{2} x}{2} \\
& \frac{1}{2} \sqrt{y}=\frac{u^{2}}{2}+c \\
& \frac{1}{2} \sqrt{y}=\frac{\ln ^{2} x}{2}+c \\
& \frac{1}{2} \sqrt{1}=\frac{\ln e)^{2}}{2}+c \\
& \frac{1}{2}=\frac{1}{2}+c \quad c=0
\end{aligned}
$$

Ex 6) Find the solution to the differential equation assuming k is a constant

$$
\begin{aligned}
& \frac{d y}{d t}=k y \\
& k=-0.5, \underset{t}{y}(0)=\underset{y}{200} \\
& \frac{1}{y} d y=K d t \\
& \int \frac{1}{y} \cdot d y=S_{k} \cdot d t \\
& \ln y=-.5 t+\ln 200 \\
& e^{-.5 t+\ln 200}=y \\
& \left(\begin{array}{l}
\ln y=k \cdot t+c \\
\ln 200=-.5(0)+c \\
\ln 200=c
\end{array}\right) \frac{e^{-.5 t} \cdot e^{\ln 200}=y}{200 e^{-.5 t}=y} \\
& \ln y=k t+C \\
& e^{k t+c}=y \\
& e^{\text {kt }} \cdot e^{c}=y . t=0 \\
& y=A e^{K t} \\
& y=P e^{\text {kt }} \\
& y=e^{c} e^{\text {kt }} \\
& \begin{array}{l}
e^{c}=y \\
y_{0}<y
\end{array} \\
& y_{0}<y
\end{aligned}
$$

Ex 7) Find the solution to the differential equation assuming k is a constant

$$
\begin{aligned}
\frac{d y}{d t} & =k y \\
\frac{1}{y} \cdot d y & =k \cdot d t \\
\int \frac{1}{y} d y & =\int k \cdot d t \\
\ln y & =k t+C
\end{aligned}
$$

$$
\left.\stackrel{(t}{0})=\stackrel{y}{60}, y_{(10}^{t}\right)=30
$$

$$
e^{K t+c}=y
$$

$$
e^{e_{k t}} e^{c}=y^{\prime} t=0, y=60
$$

$$
\left\{\begin{array}{l}
e^{(k \cdot 0)} \cdot e^{c}=60 \\
e^{c}=60 \\
60 e^{k t}=y
\end{array}\right.
$$

$$
60 e^{(k \cdot 10)}=30
$$

$$
e^{10 K}=\frac{1}{2}
$$

$$
\ln \frac{1}{2}=10 K
$$

