Volumes by Cylindrical Shells

Let S be the solid obtained by rotating about the y-axis the region bounded by $y=f(x)$ [where f is continuous and $f(x) \geq 0], y=0, x=a$, and $x=b$, where $b>a \geq 0$.

The volume of the solid in the figure above, obtained by rotating about the y-axis the region under the curve $y=f(x)$ from a to b, is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \quad \text { where } \quad 0 \leq a<b
$$

The best way to remember the above formula is to think of a typical shell, cut and flattened as in the figure below, with radius x, circumference $2 \pi x$, height $f(x)$, and thickness Δx or $d x$:

$$
\int_{a}^{b} \underbrace{(2 \pi x)}_{\text {circumference }} \underbrace{[f(x)]}_{\text {height }} d x
$$

EXAMPLE: Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and the x-axis.

EXAMPLE: Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and the x-axis.

Solution: We have

$$
2 \pi(\text { radius })(\text { height })=2 \pi \cdot x \cdot\left(2 x^{2}-x^{3}\right)=2 \pi\left(2 x^{3}-x^{4}\right)
$$

Note that $2 x^{2}-x^{3}=0$ if $x=0,2$. Therefore

$$
V=\int_{0}^{2} 2 \pi\left(2 x^{3}-x^{4}\right) d x=2 \pi \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x=2 \pi\left[\frac{x^{4}}{2}-\frac{x^{5}}{5}\right]_{0}^{2}=\frac{16 \pi}{5}
$$

EXAMPLE: Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=(x-1)(x-3)^{2}$ and the x-axis.

EXAMPLE: Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=(x-1)(x-3)^{2}$ and the x-axis.

Solution: We have

$$
2 \pi(\text { radius })(\text { height })=2 \pi \cdot x \cdot(x-1)(x-3)^{2}=2 \pi\left(x^{4}-7 x^{3}+15 x^{2}-9 x\right)
$$

Note that $(x-1)(x-3)^{2}=0$ if $x=1,3$. Therefore

$$
\begin{aligned}
V & =\int_{1}^{3} 2 \pi\left(x^{4}-7 x^{3}+15 x^{2}-9 x\right) d x \\
& =2 \pi \int_{1}^{3}\left(x^{4}-7 x^{3}+15 x^{2}-9 x\right) d x=2 \pi\left[\frac{x^{5}}{5}-\frac{7 x^{4}}{4}+5 x^{3}-\frac{9 x^{2}}{2}\right]_{1}^{3}=\frac{24 \pi}{5}
\end{aligned}
$$

EXAMPLE: Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y=\sqrt[3]{x}, x=8$ and the x-axis.

EXAMPLE: Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y=\sqrt[3]{x}, x=8$ and the x-axis.

Solution 1 (Shells): We have

$$
y=\sqrt[3]{x} \Longrightarrow x=y^{3}
$$

hence

$$
2 \pi(\text { radius })(\text { width })=2 \pi \cdot y \cdot\left(8-y^{3}\right)=2 \pi\left(8 y-y^{4}\right)
$$

Note that $8 y-y^{4}=0$ if $y=0,2$. Therefore

$$
V=\int_{0}^{2} 2 \pi\left(8 y-y^{4}\right) d y=2 \pi \int_{0}^{2}\left(8 y-y^{4}\right) d y=2 \pi\left[4 y^{2}-\frac{y^{5}}{5}\right]_{0}^{2}=\frac{96 \pi}{5}
$$

Solution 2 (Discs): We have

$$
A(x)=\pi\left(x^{1 / 3}\right)^{2}=\pi x^{2 / 3}
$$

therefore

$$
\left.\left.V=\int_{0}^{8} A(x) d x=\int_{0}^{8} \pi x^{2 / 3} d x=\pi \frac{x^{2 / 3+1}}{2 / 3+1}\right]_{0}^{8}=\pi \frac{3}{5} x^{5 / 3}\right]_{0}^{8}=\pi \frac{3}{5} 8^{5 / 3}=\frac{96 \pi}{5}
$$

EXAMPLE: Find the volume of the solid obtained by rotating about the line $x=6$ the region bounded by $y=2 \sqrt{x-1}$ and $y=x-1$.

EXAMPLE: Find the volume of the solid obtained by rotating about the line $x=6$ the region bounded by $y=2 \sqrt{x-1}$ and $y=x-1$.

Solution 1 (Shells): We have

$$
\begin{aligned}
2 \pi(\text { radius })(\text { height }) & =2 \pi \cdot(6-x) \cdot(2 \sqrt{x-1}-x+1) \\
& =2 \pi\left(x^{2}-7 x+6+12 \sqrt{x-1}-2 x \sqrt{x-1}\right)
\end{aligned}
$$

Note that $2 \sqrt{x-1}=x-1$ if $x=1,5$. Therefore

$$
\begin{aligned}
V & =\int_{1}^{5} 2 \pi\left(x^{2}-7 x+6+12 \sqrt{x-1}-2 x \sqrt{x-1}\right) d x \\
& =2 \pi \int_{1}^{5}\left(x^{2}-7 x+6+12 \sqrt{x-1}-2 x \sqrt{x-1}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\frac{7 x^{2}}{2}+6 x+8(x-1)^{3 / 2}-\frac{4}{3}(x-1)^{3 / 2}-\frac{4}{5}(x-1)^{5 / 2}\right]_{1}^{5} \\
& =\frac{272 \pi}{15}
\end{aligned}
$$

Solution 2 (Discs): We have

$$
\begin{array}{ll}
y=2 \sqrt{x-1} & \Longrightarrow \\
y=x=\frac{y^{2}}{4}+1 \\
y-1 \quad & \Longrightarrow \quad x=y+1
\end{array}
$$

hence

$$
\begin{aligned}
A(y)=\pi R_{\text {big }}^{2}-\pi R_{\text {small }}^{2}=\pi\left(R_{\text {big }}^{2}-R_{\text {small }}^{2}\right) & =\pi\left(\left[6-\left(\frac{y^{2}}{4}+1\right)\right]^{2}-[6-(y+1)]^{2}\right) \\
& \left.=\pi\left(\left(5-\frac{y^{2}}{4}\right)^{2}-(5-y)\right)^{2}\right) \\
& =\pi\left(\frac{1}{16} y^{4}-\frac{7}{2} y^{2}+10 y\right)
\end{aligned}
$$

Note that $\frac{y^{2}}{4}+1=y+1$ if $y=0,4$. Therefore

$$
V=\int_{0}^{4} A(y) d y=\int_{0}^{4} \pi\left(\frac{1}{16} y^{4}-\frac{7}{2} y^{2}+10 y\right) d y=\pi\left[\frac{y^{5}}{80}-\frac{7 y^{3}}{6}+5 y^{2}\right]_{0}^{4}=\frac{272 \pi}{15}
$$

EXAMPLE: Find the volume of the solid obtained by rotating about the line $y=-1$ the region bounded by $x=(y-2)^{2}$ and $y=x$.

EXAMPLE: Find the volume of the solid obtained by rotating about the line $y=-1$ the region bounded by $x=(y-2)^{2}$ and $y=x$.

Solution: We have

$$
2 \pi(\text { radius })(\text { width })=2 \pi \cdot(y+1) \cdot\left(y-(y-2)^{2}\right)=2 \pi\left(-y^{3}+4 y^{2}+y-4\right)
$$

Note that $(y-2)^{2}=y$ if $y=1,4$. Therefore

$$
\begin{aligned}
V & =\int_{1}^{4} 2 \pi\left(-y^{3}+4 y^{2}+y-4\right) d y \\
& =2 \pi \int_{1}^{4}\left(-y^{3}+4 y^{2}+y-4\right) d y \\
& =2 \pi\left[-\frac{y^{4}}{4}+\frac{4 y^{3}}{3}+\frac{y^{2}}{2}-4 y\right]_{1}^{4} \\
& =\frac{63 \pi}{2}
\end{aligned}
$$

