Section 2.3 Exercises

1. The function $y=\frac{1}{(x+2)^{2}}$ is continuous because it is a quotient of polynomials, which are continuous. Its only point of discontinuity occurs where it is undefined. There is an infinite discontinuity at $x=-2$.
2. The function $y=\frac{1}{x^{2}+1}$ is continuous because it is a quotient of polynomials, which are continuous. Furthermore, the domain is all real numbers because the denominator, $x^{2}+1$, is never zero. Since the function is continuous and has domain $(-\infty, \infty)$, there are no points of discontinuity.
3. The function $y=\sqrt{2 x+3}$ is a composition $(f \circ g)(x)$ of the continuous functions $f(x)=\sqrt{x}$ and $g(x)=2 x+3$, so it is continuous. Its points of discontinuity are the points not in the domain, i.e., all $x<-\frac{3}{2}$.
4. (a) Yes, $f(1)=1$.
(b) Yes, $\lim _{x \rightarrow 1} f(x)=2$.
(c) No
(d) No
5. (a) No
(b) No, since $x=2$ is not in the domain.
6. Since $\lim _{x \rightarrow 2} f(x)=0$, we should assign $f(2)=0$.
7.

$$
[-3,6] \text { by }[-1,5]
$$

(a) $x=2$
(b) Not removable, the one-sided limits are different.
20.

$[-3,6]$ by $[-1,5]$
(a) $x=2$
(b) Removable, assign the value 1 to $f(2)$.
21.

$$
[-5,5] \text { by }[-4,8]
$$

(a) $x=1$
(b) Not removable, it's an infinite discontinuity.
22.

[-4.7, 4.7] by [-3.1, 3.1]
(a) $x=-1$
(b) Removable, assign the value 0 to $f(-1)$.
23. (a) All points not in the domain along with $x=0,1$
(b) $x=0$ is a removable discontinuity, assign $f(0)=0$. $x=1$ is not removable, the one-sided limits are different.
24. (a) All points not in the domain along with $x=1,2$
(b) $x=1$ is not removable, the one-sided limits are different. $x=2$ is a removable discontinuity, assign $f(2)=1$.
41. One possible answer:

43. One possible answer:

47. We require that $\lim _{x \rightarrow 3^{+}} 2 a x=\lim _{x \rightarrow 3^{-}}\left(x^{2}-1\right)$:

$$
\begin{aligned}
2 a(3) & =3^{2}-1 \\
6 a & =8 \\
a & =\frac{4}{3}
\end{aligned}
$$

49. Solve at $x=-1$

$$
\begin{aligned}
f(x) & =4-x^{2}=4-(-1)^{2}=4+1=5 \\
f(x) & =a x+1 \text { at } x=1 \\
5 & =a(1)+1 \\
a & =4
\end{aligned}
$$

