L'Hopital's rule

L'Hôpital's Rule for $\frac{0}{0}=\frac{\infty}{\infty} \quad$ Indeterminate form
Suppose $\lim f(x)=\lim g(x)=0$. Then

1. If $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then $\lim \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$.
2. If $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$ tends to $+\infty$ or $-\infty$ in the limit, then so does $\frac{f(x)}{g(x)}$.
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=\frac{\cos 0}{1}=$ (1)
$\frac{\sin \theta}{0}=\frac{0}{0}$
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\lim _{x \rightarrow 5} \frac{2 x}{1}=2 \cdot 5=10$
$\begin{aligned} & \frac{\frac{0}{0}}{(x+5)(x-5)} \\ & x-5\end{aligned}=5+5=0$

$$
\lim _{x \rightarrow \infty} \frac{2 x+3}{x^{2}+2 x-1}=\lim _{x \rightarrow \infty} \frac{2}{2 x+2}=0
$$

