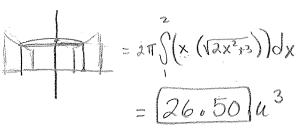
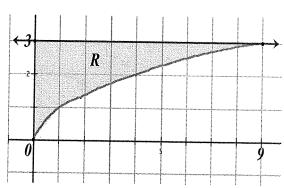

CALCULUS AB WS CH.7 Name


1) Let R be the enclosed region between the graph of f and the f-axis on the given interval.

$$f(x) = \sqrt{2x^2 + 3}$$
 ; [1, 2] (Show work)

a) Find the volume V of the solid obtained by revolving R about the x-axis.

b) Find the volume V of the solid generated by revolving R about the y-axis.



2) Find the area between graphs on interval. (Show work)

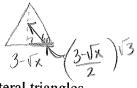
$$f(x) = x \qquad g(x) = \sqrt{x} \qquad [0,4]$$

$$= \sqrt{(x-x)} dx + \sqrt{(x-x)} dx$$

$$= \sqrt{6} + 2.83 = 2.9$$

- 3) Given the region R between the graph of $f(x) = \sqrt{x}$ and g(x) = 3. (Set up and use your calculator)
- a) Find Area using vertical cross sections $A = \int_{0}^{4} (3 \sqrt{x}) dx$

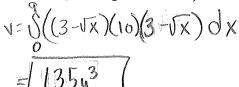
$$A = 9u^2$$

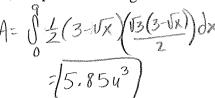


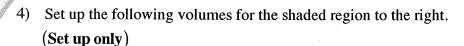
b) Find Area using horizontal cross sections

$$A = \int_{0}^{\infty} y^{2} dy$$

$$A = 9n^{2}$$


Find the volume of the solid whose base is the region between f(x) and g(x) and whose cross sections cut by planes perpendicular to the x-axis are:


c) squares


$$V = \int (3 - \sqrt{x})^2 dx$$

= $\int [3.5u^3]$

d) rectangle (height=10 · base)

e) equilateral triangles

a) volume about x-axis

$$V = \pi \int_{2}^{5} (f(x))^{2} - (g(x))^{2} dx$$

b) volume about y-axis
$$V = 2\pi \int_{2}^{5} \times (f(x) - g(x)) dx$$

--3-.....<u>2</u>.. g(x)

c) $_{5}$ vol. about line x = 2

$$2\pi\int(8-x)(f(x)-g(x))dx$$

d) vol. about line
$$y = -5$$
e) vol. about line $x = -3$

$$V = \sqrt{15} \left(f(x) + 5 \right)^2 - \left(g(x) + 5 \right)^2 dx$$

$$V = \sqrt{15} \left(f(x) + 3 \right) \left(f(x) - g(x) \right) dx$$

$$V=2\pi\int_{2}^{\pi}(x+3)(f(x)-g(x))dx$$

f) vol. about line y = 8

$$V = \pi \int_{2}^{5} (8 - (g(x))^{2} - (8 - f(x))^{2}) dx$$

vol. about line y = 1

y=
$$\pi$$
 $(f(x)-1)^2-(g(x)-1)^2$

h) vol. about line x = 2

Find the volume of the solid whose base is the shaded region and whose cross sections

cut by planes perpendicular to the **X**-axis are :

i) squares
$$\int_{2}^{5} (f(x) - g(x))^{2} dx$$

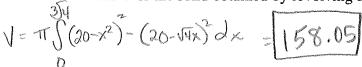
j) equilateral triangles
$$\frac{1}{2} \int_{2}^{5} (f(x) - g(x)) \sqrt{\frac{f(x) - g(x)}{2}} dx$$
k) semicircles
$$\frac{1}{2} \int_{2}^{5} (f(x) - g(x)) \sqrt{\frac{f(x) - g(x)}{2}} dx$$

- A= 511-2

$$\int_{2}^{\pi} \int_{2}^{5} \left(\frac{f(x) - g(x)}{2} \right)^{2} dx$$

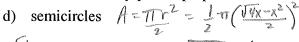
Let R be the enclosed region between the graph of $f(x) = \sqrt{4x}$ and $g(x) = x^2$.

(Set up and use calculator)

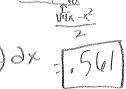

Find the volume V of the solid obtained by revolving R about the line y = -7.

$$V = \pi \sqrt{(4x+7)^2 - (x^2+7)^2} dx = [68.14]$$

- JUX = X"
- Find the volume V of the solid obtained by revolving R about the line x = 10.


$$\sqrt{2} = 277 \int_{0}^{34} (10-x)(\sqrt{4x}-x^{2}) dx = \boxed{77.79}$$

- Find the volume V of the solid obtained by revolving R about the line y = 20.



Find the volume V of the solid whose base is the region between f(x) and the g(x) and whose A= 36h cross sections cut by planes perpendicular to the x-axis are :

e) equilateral triangles

J'(MX-X2)(J4X-X2)J3) 0X