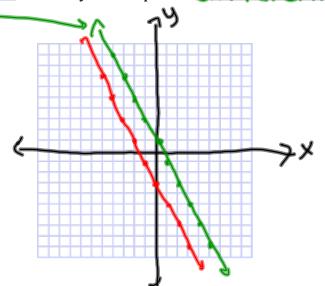

Algebra 11-6 Systems & Parallel Lines & 11-7 Situations that Always or Never Happen Warm-Up

1. Describe parallel lines using words and a drawing.

2. What is true about the slopes of parallel lines (use Ch. 7 notes if you need to)

Algebra 11-6 Systems & Parallel Lines

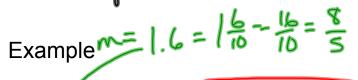

Parallel Lines

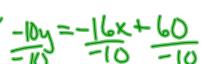
Because **parallel lines** do not **nersect**, there is no **Solution**. Remember slopes of parallel lines are _____, and the y-intercepts are **different**

Example

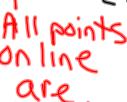
$$y = -2x + 1$$

 $y = -2x - 3$

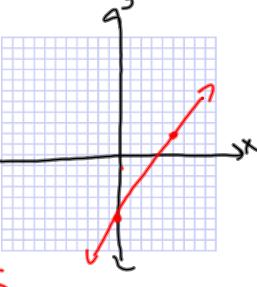

m=-2 Start


Coincident Lines

Coinciding lines are exactly the same ______ when plotted, but can look ______ when written as an equation. Because a line goes on and on, forever, there are infinite_____ solutions_ when we plot coinciding lines. Coinciding lines have the same ______ AND the same ______ -


intercept.




$$y = 1.6x - 6$$

 $16x - 10y = 60$

infinite Solutions!

When solving an equation, if you get a $\frac{100}{100}$ statement such as 6 > 2 or 5 = 5, then all $\frac{100}{100}$ numbers are the solution.

When solving an equation, if you get a $\frac{4a}{4a}$ statement such as $6 > \frac{7}{2}$ or $5 = \frac{9}{2}$, then there is $\frac{8}{4a}$ because it is not $\frac{9}{4a}$ because

Example

1. Solve 9x - 5x - 2(2x+1) = 15.

$$9x-5x-4x-2=15$$

 $0x-2=15$
 $-2 \neq 15$

11-6 #'s 1-3, 8-16 11-7#'s 4-9

2. Solve
$$20y + 17 - (7 + 20y) < 11$$
.

ing:nitelymany