

Example Problems

1. If a car is traveling at $r$ miles per hour and the brakes are applied, the car will take approximately $d$ feet to stop, where

$$
d=r+\frac{r^{2}}{20}
$$

a. This is a formula for 0 in terms of $\qquad$ $r$ .
b. $\qquad$ depends on $\qquad$ $r$ .
c. What is the approximate braking distance for a car traveling 50 miles per hour?

$$
\begin{aligned}
& d=50+\frac{5 D^{2}}{20} \\
& \text { circumfererence of a circle witt } \\
& C=\pi \cdot D \\
& c=\pi \cdot 10 \\
&=3.14(10) \\
&=31.4 \mathrm{~cm}
\end{aligned}
$$

2. Find the circumference of a circle with a radius of 5 cm .

3. Find the distance you traveled if you drove 60 mph for 2.5 hours
4. Find the perimeter 0 a rectangle with a length of 4 feet and a width of 3.5 feet

$$
\begin{aligned}
& \text { 4. Find the perimeter of a rectangle with a length of } 4 \text { feet and a width of } 35 \text { feet } \\
& 3.5+4+3.5+3.5=\frac{20 L d}{600+s^{2}}
\end{aligned}
$$

is a formula for finding the number of cars that should be allowed on a road at a given time.

$$
\begin{aligned}
& L=\text { number of lanes on road } \\
& d=\text { length of roar (in feet) } \\
& s=\text { average speed of car }(\mathrm{mph})
\end{aligned} \quad N=\$ \text { of cars }
$$

About how many cars an safely be on 5-mile stretch of a 4-lane highway if the average speed of the cars 1560 mph ? 503 car

$$
\begin{aligned}
N=\frac{20(4)(26400)}{600+(60)^{2}} & =\frac{2,112,00}{600+36000} \\
& =\frac{2,112,000}{4200} \\
& =502.9
\end{aligned}
$$

