Algebra 1-5: Variables in Formulas		
Warm-Up	21 11 22 - 11 0 - 21	
1. Evaluate 4n² when	$_{n=3}$. 36 $4 \cdot 3^{2} = 4.9 = 36$	
2. Evaluate (4n)² w	hen n = 3. 144 $(4.3)^2 = 13^2 = 144$	
3. Find a value of n	so that the value of $4n^2$ is the same as the value of $(4n)^2$.	
Vocabulary	Definition Example	
Formula	· helps you find something A= L·W	
"In terms of"	A=l.w Aisinterms Landw	
"Depends on"	Adepends on landw	
Arac	depends on C=1T.D	
لمارك	ength and Cisin terms tho fa of D.	
(e)	ctangle.	

Common Formulas Perimeter of a Square/Rectangle = 2lt 2w Area of a Square/Rectangle = 2w or bh Space in side 200 or bh Distance = Rate • Time (D=R·T)	~
Circumference (distance around) of a Circle = T.D. diameter	

Example Problems

- 1. If a car is traveling at r miles per hour and the brakes are applied, the car will take approximately d feet to stop, where $d = r + \frac{r^2}{r}$
 - a. This is a formula for d in terms of $\underline{\mathcal{C}}$
 - b. depends on r
 - c. What is the approximate braking distance for a car traveling $50 \underline{\text{ miles per hour?}}$

$$d = 50 + \frac{50^2}{30} = \frac{50 + 2,500}{30} = \frac{50 + 135}{175}$$

2. Find the circumference of a circle with a radius of 5 cm.

