Algebra 4-9: Graphing Linear Patterns

Warm-Up

For 1-6, determine whether or not the following numbers could represent the lengths of the sides of a triangle. Show why or why not.

1. 1,3 & 7	1+377,477,NU
2. 3,8 & 8	3+8>8, 1178, yes
3. 4, 4, & 4	47474, 874, yes
4. 2, 3, & 4	2+3>4,574,495
5. 6, 1 & 5	175-76, 676, No
6. 9, 11, & 17	9+11>17, 20717, yes

7. An isosceles triangle has side-lengths of 7, 7, and x. What are the possible lengths of x? Write your answer as a **compound inequality**. (If you don't know what "Isosceles" means, look it up.)

$$\frac{02 \times 214}{214}$$

$$\frac{214}{-7-7}$$

$$\frac{-7-7}{21}$$

$$\frac{14}{21}$$

Vocabulary	Definition	Example
Constant-Increase	· goes up at	e learn #10 av
Constant-Decrease	· goes down at the same rate	· Spend #15 each weck
Linear Equation	· has lor avaria · When graphed it	$\begin{array}{c c} 1bles & X+y=10 \\ \hline & 3y+2= \end{array}$
NATIon to a second in in the case	forms aline	$ \begin{array}{c} \chi = 3 \\ y = 5 \end{array} $
	ord Linear ? (Besides "ear")	ine 5

Examples

Use the figure to label each line as a constant-increase, constant-decrease, or no increase or decrease.

- 1. Line a in < re 4 5 2
- 2. Line b decrease
 3. Line c Noincrease
 Ordecrease

- 4. Suppose you have \$15 saved from babysitting and you continue to save \$5 each week. After w weeks, how much money will you have?
- a. If t represents the total amount of money you have after w weeks write an equation involving t and w.

- b. Make a table to represent your total money t after w weeks.
- c. Graph your total money t after w weeks.

ω	t	
D	15	15+560)
	30	
2	25	13+(3)(2)
3	30	

5. Make a table for each equation.

b.
$$y = -2x + 1$$
 c. $y = x - 3$

c.
$$y = x - 3$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{2}}{\lambda_{1}} = \frac{\lambda_{1}}{\lambda_{2}}$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{2}}{\lambda_{1}} = \frac{\lambda_{1}}{\lambda_{2}}$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{2}}{\lambda_{1}} = \frac{\lambda_{1}}{\lambda_{2}}$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{2}}{\lambda_{1}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{2}}{\lambda_{1}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{\lambda_{1}}{\lambda_{1}}$$

$$\frac{\lambda_{1}}{\lambda_{1}} = \frac{\lambda_{1}}{\lambda_{$$