Warm-Up

1. What is a projectile? Give 3 examples that include a drawing.

pro,

2. A quadratic equation must have an _____ symbol and a variable to the **Second** power. 2 different examples of quadratic equations are and <u>v = x2+dx-</u>3

- **3.** The equation $h = -.025x^2 + x + 6$ describes a football being thrown. "h" represents height and x represents the yards traveled. (Use the graph on page 568.)
 - **a.** A receiver is 40 yards down the field. How high is the football?

2. At what two times is the ball 9 feet in the air?

C. A defender is 3 yards in front of the receiver. Can the defender deflect that

Algebra 9-4: Applications for Quadratics

Examples

- 1. A formula relating speed x (in mph) of some cars and the stopping distance d (in feet) is $\mathbf{d} = .05\mathbf{x}^2 + \mathbf{x}$.
 - **a.** If a car is traveling 55 mph, what is the expected stopping distance?

$$d = .DS(55)^2 + 55$$

 $h = -.163x^2 + 11.43x.$

a. Graph this equation.

b. A 75-oot tree 10 feet from the launch pad, is in the path of the rocket.

Will the rocket clear the top of the tree? Why or why not?

C. Estimate the maximum height that the rocket will reach.

- 3. The rocket's height hat t seconds after launch is given by $h = -22.2t^2 + 133t$.
 - **a.** Graph this equation. (Use graphing calculator to save time.)
 - b. How high is the rocket at 2 seconds? $\frac{17}{133}(\frac{1}{2}) = 177.2$
 - C. Use the graph to estimate how many seconds it will take for the rocket to reach its maximum height.
 - d. How many seconds will it take for the rocket to hit the ground?

Assignment: 9-4 #'s 1, 4-22, 2 graphs