Algebra Ch. 11 Linear Systems

11-1 Warm-Up

1. Graph
$$y = -3x + 4$$

2. Graph
$$2x + y = 5$$

Algebra 11-1 Introduction to Systems

Word	Definition	Example
System of Equations		
Solution of a System		

Finding Solutions by Graphing

1. Graph each equation.

a. Graph by making a _____OR

b. Graph by using _____ where m = ____ and b = _____.

2. The point of ______ is the _____.

* If the lines do not intersect, then there is ______.

Examples

1. Find the solution to the system. $\begin{cases} y = 1.5x - 10 \\ x + y = 0 \end{cases}$

2. Find the solution to the system. $\begin{cases} y = 3x - 1 \\ y = 3x + 2 \end{cases}$

3. Two friends, Joanna and Carey, are growing out their hair. They plan to cut it off at a certain point and donate it to a charity that makes wigs for people with cancer. Joanna's hair is already 20 centimeters long and grows at a constant rate of 1 centimeter per month. Carey's hair is 10 centimeters and growing at a speed of 2 centimeters per month. If the girls get their hair cut on a certain day, they will have exactly the same length to donate. How long will that take?

Assignment: 11-1 #'s 2, 5, 7-13, 16, 17 (4 graphs)

Algebra 11-2: Solving Systems Using Substitution

Warm-Up

1. Solve.
$$5x - 25 = -8x + 40$$

$$2. \frac{1}{2} x - 5 = \frac{3}{4} x + 12$$

Algebra 11-2: Solving Systems Using Substitution

Solving by Substitution

1. One equation must be solved for a ______. For example, x + y = 14 is _____

_____ for a variable but _____ is solved for _____.

- 2. S_____.
- 3. Solve the _____.
- 4. To get the other variable, _____
- 5. Check.

Examples

Solve by substitution.

1.
$$\begin{cases} y = 1.5x - 10 \\ x + y = 0 \end{cases}$$

2.
$$\begin{cases} y = 5x + 9 \\ y = -3x + 37 \end{cases}$$

Algebra 11-3 More Uses of Substitution Warm-Up

Solve the system of equations. (y = 3x + 23)

1.
$$\begin{cases} y = 3x + 23 \\ y = x + 11 \end{cases}$$

Algebra 11-3 More Uses of Substitution

Examples

1. Where do the equations y = 6x - 1 and 7x - 2y = -3 intersect?

2. A family bought 2 chairs. One chair costs \$15 less than the other. Together they cost \$374. Find the price of each chair.

11-4 Solving Systems by Elimination (Addition)

Warm-Up

Solve the system of equations.

1.
$$\begin{cases} a = 3b - 3 \\ 7a - 2b = 17 \end{cases}$$

Algebra 11-4 Solving Systems by Elimination (Addition)

Goal:	To have opposite coeffic	Then, add the _		
	together to	a variable.		

Solve the system by eliminating a variable.

1.
$$\begin{cases} c + d = 1 \\ c - d = -11 \end{cases}$$

$$2. \begin{cases} 2x - 5y = 18 \\ 4x - 5y = -4 \end{cases}$$

3. Mark has one less than twice the number of cd's as Felipe has. Together they have 65 cd's. How many cds do each of them have?

Assignment: 11-4 #'s 3-6, 9-15, 17, 22, 23

Algebra 11-5 Solving Systems by Multiplication Warm-Up

Solve.

1.
$$2x + 3 = 7$$

2.
$$4x + 6 = 14$$

3. What do you notice about the equations you just solved? _____

Algebra 11-5 Solving Systems by Multiplication

Goal: To have opposite coefficients in front of the same variable. Then, add the ______
together to _____ a variable.

Examples

Solve each system of equation.

1.
$$\begin{cases} 5x + 2y = 11 \\ x + 6y = 19 \end{cases}$$

2.
$$\begin{cases} 5a + 3b = -15 \\ a + .5b = -3 \end{cases}$$

Assignment: 11-5 #'s 9-16, 18, 20

Algebra 11-6 Systems & Parallel Lines & 11-7 Situations that Always or Never Happen Warm-Up

- 1. Describe parallel lines using words and a drawing.
- 2. What is true about the slopes of parallel lines (use Ch. 7 notes if you need to)

Algebra 11-6 Systems & Parallel Lines

Parallel Lines

Because **parallel lines** do not ______, there is no ______. Remember slopes of parallel lines are ______, and the y-intercepts are ______.

Example

$$\begin{cases} y = -2x + 1 \\ y = -2x - 3 \end{cases}$$

Coincident Lines

Coinciding lines are exactly the same _____ when plotted, but can look _____ when written as an equation. Because a line goes on and on, forever, there are ____ when we plot coinciding lines. Coinciding lines have the same ____ AND the same ____-

Example

$$\begin{cases} y = 1.6x - 6 \\ 16x - 10y = 60 \end{cases}$$

11-7 Situations that Always or Never Happen Assignment

When solving an equation, if you get a ______ statement such as 6 > _____ or 5 = ____, then all _____ numbers are the solution.

When solving an equation, if you get a ______ statement such as 6 > _____ or 5 = ____, then there is _____ because it is not _____.

Example

1. Solve 9x - 5x - 2(2x+1) = 15.

2. Solve 20y + 17 - (7 + 20y) < 11.

11-6 #'s 1-3, 8-16

11-7#'s 4-9

11-8 Systems of Inequalities

Warm Up

11-8 Systems of Inequalities

Steps

1. Graph & shade the first inequality.

-	Graph the line by making a	 or	use the form y	where

stands for the _____ and ____ stands for the _____.

- Pick a point (x, y) **clearly** on one side of the line.

- Test the point to see if it is a ______. Plug ____ and ____ into the inequality.

- If it is true, then the point **IS** a solution so ______ that side of the line.

- If it is false, the point **IS NOT** a solution so ______ the **OTHER** side of the line.

2. Graph & shade the second inequality.

3. Darken the overlapping area. (colored pencils help) All points in this area are ______

Remember...

- < or > means use _____ line
- ≤ or ≥ means use _____ line

Examples

Solve each system of inequalities by graphing.

1.

$$\begin{cases} 3x + y \le 4 \\ x - y > 1 \end{cases}$$

$$\begin{cases} x > 0 \\ y > 1 \end{cases}$$

$$\begin{cases} y < -\frac{1}{2}x + 4 \end{cases}$$

On your own

Suppose 2 positive numbers x and y have a **sum** that is **less than 20** and a **difference** that is **greater** than 10. Graph all possible solutions. (hint: start by writing 4 inequalities)

