## 2.3 Continuity - (Continuous)

Can you trace the graph without lifting your pencil?







## **Interior Points**

A function f(x) is continuous at an interior

point if  $\lim_{x\to c} f(x) = f(c)$ 

## **Endpoints**

A function f(x) is continuous at the left endpoint

 $if \lim_{x \to a^+} f(x) = f(a)$ 



A function f(x) is continuous at the right endpoint  $if \lim_{x \to a^{-}} f(x) = f(a)$ 

## 4 types of discontinuity

- 1. Removable (Hole in the graph)
  - Can be removed by filling in the missing point

Ex 1) 
$$f(x) = \frac{x^2 - 1}{x - 1}$$

=  $(x+1)(x+1)$ 

2. Infinite (Vertical Asymptote)  $(x+i) \times (x+i)$   $Ex 2) f(x) = \frac{x^2 + 2x + 1}{x - 1}$  UA : X = [







If a function is continuous on the interval [a,b], then f(x) must take on all y-values between f(a) and f(b)

